LER: NATURLIG VANDBEHANDLING
- MILJØFORBEDRING I DEN GLOBALE AKVAKULTURSEKTOR

RAPPORT FOR PROJEKT 10/18845 MED STØTTE FRA
## Indhold

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kapiteltitel</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indledning</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Kort sagt</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Fyrtårnsprojekt</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Om ler</td>
<td>11</td>
</tr>
<tr>
<td>4.1</td>
<td>Krystalinsk opbygning</td>
<td>12</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Isomorf substitution</td>
<td>14</td>
</tr>
<tr>
<td>4.2</td>
<td>Adsorption og absorption</td>
<td>15</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Flokkulering og dispergering</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Kolloider, kvældning og elektrisk tiltrækningskraft</td>
<td>15</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Adsorption</td>
<td>19</td>
</tr>
<tr>
<td>4.3</td>
<td>Lerlyper anvendt i projektet</td>
<td>19</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Bentonit</td>
<td>19</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Moler</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Observerede effekter af lertilsætning i akvakultur</td>
<td>22</td>
</tr>
<tr>
<td>5.1</td>
<td>Gasser i vand</td>
<td>22</td>
</tr>
<tr>
<td>5.2</td>
<td>De almindelige kemiske vandkvalitetsparametre</td>
<td>22</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Ammonium</td>
<td>22</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Nitrit og nitrat</td>
<td>23</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Alkanitet og pH</td>
<td>23</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Fosfor</td>
<td>23</td>
</tr>
<tr>
<td>5.3</td>
<td>Sportstoffer</td>
<td>23</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Resultater</td>
<td>24</td>
</tr>
<tr>
<td>5.4</td>
<td>Øvrige stoffer</td>
<td>25</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Geosmin</td>
<td>25</td>
</tr>
<tr>
<td>5.5</td>
<td>Mikrobiologiske parametre</td>
<td>27</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Indledende betragtninger vedr. bakterier i opdrætsvand</td>
<td>27</td>
</tr>
<tr>
<td>5.6</td>
<td>Forsøg med ler til fjernelse af bakterier</td>
<td>29</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Delforsøg 1: Bakterieniveau i forhold til ler og saltbehandling</td>
<td>29</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Delforsøg 2: Bakterieniveau i forhold til ler og saltbehandling</td>
<td>31</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Delforsøg 3: Bakterieniveau i supernatant i forhold til ler og saltbehandling</td>
<td>32</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Delforsøg 4: Bakterieniveau i forhold til ler og saltbehandling</td>
<td>33</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Forsøg med Yersinia ruckeri og Aeromonas salmonicida – KU-Life</td>
<td>34</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Forsøg med Aeromonas salmonicida – Orbicon</td>
<td>35</td>
</tr>
<tr>
<td>5.7</td>
<td>Samlet konklusion for undersøgelser relateret til bakterieniveauer</td>
<td>39</td>
</tr>
<tr>
<td>5.8</td>
<td>Forsøg med ler til fjernelse af Alger</td>
<td>40</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Lerbehandling: effekter på Alger</td>
<td>42</td>
</tr>
<tr>
<td>5.9</td>
<td>Samlet konklusion for undersøgelser relateret til Alger og ler</td>
<td>47</td>
</tr>
</tbody>
</table>
5.9.1 PARTIKELFJERNELSE VED FLOKULERING OG FILTRERING ........................................................................ 48
5.10 PARASITTER ........................................................................................................................................ 49
5.10.1 FISKEDRÆBER .................................................................................................................................. 49
5.10.2 ØVRIGE PARASITTER ..................................................................................................................... 49
6 ERFARINGER FRA FORSKELIG DAMBRUG .............................................................................................. 50
6.1 DAMBRUG SOM MENER DE HAR GOD NYTTE AF LERBEHANDLING .................................................... 50
   6.1.1 EJSING SEA FARM .......................................................................................................................... 50
   6.1.2 ABILDVAD DAMBRUG .................................................................................................................... 51
   6.1.3 HØGHØJ DAMBRUG ....................................................................................................................... 52
   6.1.4 VOLDBJERG DAMBRUG ................................................................................................................... 52
   6.1.5 KÆRHEDE DAMBRUG (RACEWAY SYSTEMET) .............................................................................. 52
   6.1.6 AQUAPI INNOVATION .................................................................................................................... 52
6.2 DAMBRUG SOM IKKE HAR KONSTATERET NYTTE AF LERBEHANDLING ........................................... 53
   6.2.1 RONNUM DAMBRUG ....................................................................................................................... 53
   6.2.2 KÆRHEDE DAMBRUG (RUNDE TANKE) ....................................................................................... 53
   6.2.3 ØVRIGE DAMBRUG .......................................................................................................................... 53
6.3 KONKLUSION PÅ AFPRØVNING I PRAKSI ............................................................................................. 54
   6.3.1 BEHANDLINGSKONCENTRATIONER OG OVERLEVELSE HOS FISKENE ....................................... 55
7 SAMLET KONKLUSION PÅ PROJEKTETS UNDERSØGELSER ....................................................................... 56
   7.1 HVAD KAN LER IKKE HJÆLPE MED I FISKEOPDRÅET ......................................................................... 56
   7.2 HVAD KAN LER BIDRAGE MED I FORHOLD TIL FISKEOPDRÅET ..................................................... 56
   7.3 SIDEGEVINSTER .................................................................................................................................... 56
8 ANBEFALINGER TIL VIDERE UNDERSØGELSER ....................................................................................... 57
   8.1 VIDENSKABELIGE DOKUMENTATION AF EFFEKTER ......................................................................... 57
   8.2 GEOSMIN OG MIB ................................................................................................................................ 57
   8.3 TESTE FLERE LERTYPER OG MULIGHEDER VED AT BLANDE DEM .................................................... 57
   8.4 EFFEKT PÅ PARASITTER, SPEIELT FISKEDRÆBER ........................................................................... 57
   8.5 BEHANDLINGSKONCENTRATIONER OG FREKVENS ......................................................................... 57
   8.6 PRODUKTUDVIKLING AF LER ........................................................................................................... 57
   8.7 EVNE TIL AT BINDE MEDICINRESTER ............................................................................................... 58
   8.8 LANGTIDSEFFEKT PÅ OMSÆTNING I BIOFILTRE .............................................................................. 58
   8.9 INDFLYDELSE PÅ FOSFORÆLDNING I PLANTEDLAGER OG SLAM .................................................... 58
   8.10 EFFEKTIVE METODER TIL AT FJERNE LER OG BUNDNE STOFFER FRA VANDET ............................. 58
9 PERSPEKTIVER FOR ANVENDELSE AF LER I AKVAKULTUR .................................................................... 59
10 FAQ .......................................................................................................................................................... 59
11 BIBLIOGRAFI ............................................................................................................................................. 60
   BILAG ......................................................................................................................................................... 63
01 MÅLINGER AF BQ VÆRDIER I VANDBEHANDLINGSANLÆG HOS AQUAPI INNOVATION ....................... 64
02 BAKTERIENIVEAUER SOM RESULTAT AF SALTILSÆTNING OG LERBEHANDLING ............................... 65
03 HAR KVÆLDDNING AF LER BETYDNING FOR LERENS EVNE TIL AT BUNDFÆLDE BAKTERIER ............ 66
04 BAKTERIENIVEAU SOM FUNKTION AF LERBEHANDLING OG TID ....................................................... 67
LISTE OVER FIGURER I RAPPORTEN

Figur 1 Rummet mellem de 4 latatomer tillader netop Silicium at tage plads i midten. ........................................ 13
Figur 2 Således dannes et lag af silicium-tetraeder ................................................................. 13
Figur 3 Al(OH)₃ er den mineralske form af aluminiumhydroxid (Gibbsit) ........................................ 13
Figur 4 Grundstrukturen i Kaolinit ............................................................................... 13
Figur 5 Grundstruktur i lermineral tilhørende mica-gruppen ......................................................... 13
Figur 6 Lermineral tilhørende Chlorit -gruppen ........................................................................ 13
Figur 7 Når atomerne ordnes bliver der ledige pladser i gitterstrukturen ....................................... 14
Figur 8 Metalliske kationer i mellemlaget mellem negativt ladede lag af 2:1 plader ....................... 14
Figur 9 Lerpartikler er negativt ladet overflade ........................................................................ 15
Figur 10 Når vand erstatter kationerne mindskes bindingerne mellem de enkelte lag i lerstrukturen. ... 16
Figur 11 Resultatet af vandindtrængningen er at de enkelte lag i lerstrukturen kan forskydes. ........... 16
Figur 12 Ler under svældning, indtrængende vand skubber pladerne længere fra hinanden. .......... 16
Figur 13 Lerpartikler er negativt ladet overflade ........................................................................ 17
Figur 14 Di-valente kationer (positive ioner) f.eks. fra opløste næringssalder adsorberes til lerpartiklerne... 17
Figur 15 En negativt ladet bakterie er blevet 'fanget' af kationer der er gået i forbindelse med leret. .... 17
Figur 16 Bakterier adsorberet til en kvældet lerpartikel .................................................................. 17
Figur 17 Adsorption - partikler bindes til overfladen .................................................................. 17
Figur 19 Kvældet smectit (foto fra elektromikrop) ................................................................. 18
Figur 18 Moler optæder i en kolloid-opløsning. Bentonit er kvældet op ........................................... 18
Figur 20 Absorption - stofferne trænger/trækkes ind i strukturen .............................................. 19
Figur 21 Leraflejring fra kvartærperioden (400.000 år gammelt), Estland (Foto: Siim Sepp, 2005) ...... 20
Figur 22 Udsnit af et forsøgsanlæg hos AquaPri Innovation i Egtved ........................................... 22
Figur 23 Geosminindhold i prøver som følge af tid og behandling .............................................. 26
Figur 24 Geosminindhold i prøver som følge af tid og concentration ........................................... 26
Figur 25 Udviklingen i koncentrationen af Aeromonas salmonicida ............................................... 36
Figur 26 Udviklingen i koncentrationen i kontrolforsøget ............................................................ 36
Figur 27 Opsamling på resultaterne af forsøg med forskellige koncentrationer af Bentonit .......... 37
Figur 28 Udviklingen i koncentrationen af bakterier i forsøget, med bentonit ............................... 38
Figur 29. Udviklingen i koncentrationen af bakterier i forsøget, med bentonitkoncentration 20g/m² ...... 38
Figur 30 Udspredning af ler ved opdæt af fisk i kystvande i Korea ............................................... 40
Figur 31 Principskitse som viser hvordan udspredning af ler “fanget” algerne i vatnet ............... 41
Figur 32 Fjernelse af furealgen Karenia brevis ved behandling med ler ......................................... 41
Figur 33 Fjernelse af algetoxsin, af furealgen Karenia brevis ved tilsætning af ler ......................... 41
Figur 34 Koncentrationen af bakteriertråde før og efter behandling med ler ............................... 45
Figur 35 Den tidsmæssige udvikling i koncentrationen af den skadelige flagellat Pseudochattonella ... 45
Figur 36 Effekten på reduktionen i koncentrationen af den skadelige flagellat Pseudochattonella .... 46
Figur 37 Det kan lade sig gøre at få ler og partikulært materiale til flokkulere ud ............................ 48
Figur 38 Ejsing Seafarm er et fuldt recirkuleret indendørs anlæg .................................................. 50
Figur 39 Abildad dambrug ........................................................................................................... 51
Figur 40 Høghøj dambrug ........................................................................................................... 52
Figur 41 Ronnum Dambrug. Vandets grågønne farve skyldes lertilsættning ................................. 53
Figur 42 De hydrauliske forhold i fiskeopdætsanlægget bliver ganske synlige når der tilsættes ler! .... 56
Figur 43 Måling af BQ værder i Weaninganlægget. Spulevand fra mikrosigte .............................. 64
Figur 44 Bakterieniveauer i relation til salttilsættning ................................................................. 65
Figur 45 Bakterieniveau som følge af lerbehandling med og uden opkølvædning .......................... 66
Figur 46 BQ som funktion af lerbehandling og tid ................................................................. 67
Figur 47 Bakterieniveau i anlæg ved lerbehandling ................................................................. 68
Figur 48 Aeromonas salmonicida er en Gram-negativ bakterie.............................................. 79

LISTE OVER TABELLER I RAPPORTEN
Tabel 1 Følgende ioner findes i phyllosilikater .................................................................. 14
Tabel 2 Vurderingsmetode for evaluering af sporstoffernes reaktion ved lertilsætning .......... 24
Tabel 3 Sporstofferne kan grupperes i 4 grupper mht. deres reaktion ved lerbehandling .... 24
Tabel 4 Behandlingsoversigt for forsøg med moler, bentonit og salt .................................. 29
Tabel 5 Behandlingsoversigt for forsøg med kvældet og ukvældet ler .................................. 31
Tabel 6 Udviklingen af algekoncentration i Ejsing Seafarm ............................................... 42
Tabel 7 Reduktion i antallet af Gymnodinium galatheanum efter lertilsætning ....................... 44
Tabel 8 Reduktion af antallet flagellater og bakterier ......................................................... 44
TAK TIL

Projektpartnerne ønsker at takke Fornyelsesfonden, som har bidraget med 50 % af projektomkostningerne. Uden denne støtte var projektet ikke blevet til.

Undervejs i projektet har vi fået hjælp fra en række personer, som har stillet arbejdskraft, mod, tid, viden etc. til rådighed. Det er vi meget taknemmelige for.

Praktiserende dyrlæger Thomas Clausen og Simon B Madsen; for at gå konstruktivt ind i afprøvninger, anbefalinger og refleksioner.
Dyrlæge Niels Henrik Henriksen, Dansk Akvakultur; for et fagligt input, hjælp med geosminanalyser og for at samle tråden op i nye undersøgelser.
Professor Kurt Buchmann ved KU-Life; for at kigge lidt på ler og fiskedræber, samt introducere lerbehandling for Bornholms Laksekækkeri.
Associated Professor Martin Kristian Raida ved KU-Life; for et par dages arbejde med bakterie forsøg og databasehandling, samt god sparring.
Lektor Niels O. G. Jørgensen ved KU-Life; for et par dages arbejde med geosminanalyser og bidrag med indsigt om geosmin.
Ph.D. i mikrobiel økologi, Morten Miller fra Mycometer; for at lære os en masse om bakterieanalyser og fundamentale betragtninger indenfor mikrobiologi.
Ken E. Larsen fra Combikem; for en dags arbejde med flokkuleringsforsøg og konstruktiv kritik og inspiration til afprøvning af nye tiltag i vandbehandling.
Salgschef Johny Hansen fra Dantonit; for at være med til at gøre projektet muligt.
Bo Schønfeld fra Damolin; for at sponsorere en hel del moler og udvise interesse for perspektiverne.
Ellen Lorentzen fra Vetrinærinstituttet i Århus for; at stille bakteriekulturer til rådighed.
Kurt Carlsen fra Hydrotech; for at stille filtreringsudstyr til forsøgsbrug til rådighed.

Ejere og fiskemestre på en lang række dambrug og i særlighed dem, som er vendt tilbage med feedback, deriblandt:
Ejsing Seafarm, Abildvad Dambrug, Høghøj Dambrug, Voldbjerg Dambrug, Rakkeby Dambrug, Trend Å Dambrug, Kærhede Dambrug, Ronnum Dambrug, Bispård Dambrug, Tingkjærvad Dambrug, Kongeåens Dambrug, Nørreå Dambrug.

De bedste hilsner og tak for hjælpen fra projektgruppen

Per Andersen, Orbicon
Jesper Heldbo, AquaCircle
Martin Vestergaard, AquaPri

30. oktober 2011
1 INDLEDNING

I sommeren 2010 fik vi for første gang øjnene op for at anvendelse af LER måske havde et potentiale til at kontrollere/forbedre vandkvaliteten i fiskeopdørt. Der skete ved tilsætning af LER til bekæmpelse af en skadelig algeoblooming i et recirkuleret fiskeopdørt – og det så ud til at virke.

Da vi efterfølgende samlede information sammen fra diverse kilder stod det klart, at vi havde bevæget os ind på et felt, hvor vi ikke umiddelbart kunne få et overblik over LERs potentiale til vandbehandling i fiskeopdørt – simpelt hen fordi LER omfatter mange forskellige ”stoffer” med hver deres egenskaber, og at egenskaberne er meget afhængige af det miljø de anvendes i. Desuden kan LERs forskellige egenskaber forstærkes ved tilsætning af en lang række hjælpemidler. En målrettet optimering af LERs anvendelse i fiskeopdørt så ud til at være en større opgave som ville omfatte indsamling af viden og afprøvninger i form af eksperimenter.

Vi var af den opfattelse at potentialet så ud til at være så stort, at der burde være en kommerciel interesse for at udvikle og anvende LER i akvakulturen – dels fordi LER er billig og uden negative miljøeffekter – dels fordi fiskeopdørtrets søger bæredygtige alternativer til de nuværende behandlingsmetoder, som omfatter anvendelse af miljøskadelige stoffer, der ønskes udfaset.

Projektet har været et forprojekt, med det formål, at undersøge om vandbehandling ved tilsætning af ler har potentiale til et større projekt (Fyrtaarnsprojekt), hvis formål skulle være, at give øget viden om virkemåde, udvikle produkter og teknikker og dermed danne den til at give anledning til commercialisering af metoden og i sidste ende bidrage med nye arbejdspladser i Danmark.


2 KORT SAGT

Vi har kunnet dokumentere en række gavnlige effekter af LER på vandkvaliteten i fiskeopdørt, både i eksperimenterne og – måske af størst betydning – også ved anvendelse i praksis på en række fiskeopdørt. Se konklusioner i afsnit 7.

Vi håber at andre kan udnytte den viden vi har opsamlet og præsenteret i denne rapport og vi håber at andre kan føle sig inspireret til at følge op på nogle af de ”spor” vi har blotlagt. Se perspektiverne i afsnit 9.

Vi er overbevist om, at vi kun har set starten af anvendelsen af LER i akvakulturen, og at der er store muligheder for både at udvide anvendelsen i fiskeopdørt og til at omfatte andet end fiskeopdørt. Se anbefalingerne i afsnit 8.
3 FYRTÅRNSPROJEKT

På forunderlig vis kan ler bidrage til en dybere forståelse af, hvordan vi optimerer recirkuleret fiskeopdræt. Det kan det både direkte ved anvendelse, men også indirekte ved at afdække problemstillinger og visualisering af reseprocesser.

Som det fremgår af nærværende projektrapport er der et betydeligt potentiale i at anvende lerbehandling i fiskeopdræt – både i Danmark og resten af verdenen. Men når det kommer til en kommercialisering af ideen er oddsene svære. Projektgruppen har haft kontakt til 3 forskellige danske producenter af ler. Fælles for dem, er at de gode til at grave ler op, sigte det, tørre det og i høj grad sælge det som bulkvare til en relativ lav kilopris. Det er deres primære forretning. Interessen og kapaciteten til at gå ind i decideret produktudvikling har været til at overse.

Det har derfor desværre ikke været muligt at identificere kommercielle partnere til et efterfølgende Fyrtårnsprojekt – en af grundene er måske at LER allerede nu er taget i rutinemæssig anvendelse på en række fiskeopdræt med gavnlig effekt – så det kan se ud som om anvendelsen af LER allerede er på plads og optimeret. Det er dog langt fra vores opfattelse.

Vægten i afrapporteringen er lagt på, at flest mulige mennesker i relation til fiskeopdræt kan hente inspiration og indsigt til videreudvikling af specielt recirkuleret fiskeopdræt. Forhåbentlig ville der komme afledte projekter, der kan give mere præcis og specifik viden mht. anvendelse af ler i relation til akvakultur. Der har været stor interesse fra forskellige forskningsinstitutioner til at indgå i eventuelle nye projekter.
Ler er et naturligt forekommende aluminiumssilikat. Silikatminerale udgør størsteparten af Jordens skorpe og kappe, hvor fieldspat er langt det mest forekommende bjergartsdannende mineral i skorpen.

Silikater er en fællesbetegnelse for kemiske forbindelser, hvori der indgår silicium og en anion (negativt ladet ion). Langt de fleste silikater er mineraler, altså oxider bygget op omkring bindinger mellem silicium og ilt. Skelettet i silikatminerale er SiO₄-tetraederet, hvis struktur i det enkelte mineral, også afgør hvorledes mineralerne klassificeres, se afsnit 4.1.


Lermineraler er typisk dannet over lange perioder gennem gradvis kemisk forvitring af silikat-bjergarter. Vand som siver ned fra jordoverfladen bliver ofte surt og under den videre passage ned gennem bjergarterne oploses dissel. Aflejring kan finde sted på dannelsesstedet, men ofte fører vind eller vand lermineraler til et nyt aflejringssted – hvor forholdene muliggør sedimentation af de meget lette lerpartikler - f.eks. i stillestående søer og på havbunden, hvor det med tiden og under stort pres kan omdannes til skiffer. Ler kan også aflejres af vind, hvorved der dannes den meget frugtbare löss. Lertyper som ikke flyttes fra dannelsesstedet kaldes primært ler eller kaoliner.

Som regel inddeles ler i fire hovedgrupper: kaolinit, montmorillonit - smeectit, illit, og chlorit, men chlorit bliver til tider klassificeret som en særskilt gruppe af phyllosilikater. Der findes omkring 30 forskellige typer af "rene" ler i disse kategorier, men de fleste naturlige ler er i virkeligheden blandinger af disse forskellige typer, sammen med andre forvitrede mineraler.

Vægtmæssigt består ler af mere end 15 % partikler med en diameter under 0,002 mm. Ved teksturanalyser af jordtyper er lerfraktionen den mest finkornede.

Da ler indeholder ret betydelige mængder af kalium, magnesium og jern vil en lerjord - via sine nedbrydningsrester - altid fra naturens hånd være mere frugtbart end en sandjord. I den forbindelse taler man om jordtypens bonitet.
Ler har en laggitterstruktur, hvilket skyldes, at lerkornene normalt er pladeformede eller stavformede. Denne form på lerkornene kommer af lermineralernes opbygning, der ligeledes har en laggitterstruktur (Ovesen og et.al. 2009).

Den første grundlæggende enhed i lermineralet er en tetraeder - opbygget af silicium og ilt, se Figur 1. Silicium deler sine 4 positive ladninger mellem de 4 iltatomer. Iltatomerne, derimod, har stadig en fri negativ ladning. Stoffet der er dannet, Si₄⁴⁺, er det anioniske orthosilikat, som, hvis forholdene byder sig, nemt bindes til alkaliske ioner i jord. Imidlertid kan iltatomerne også bruge deres frie negative ion til at etablere forbindelse til endnu et siliciumatom. Hvis hvert af de 4 iltatomer bindes til et siliciumatom opstår kvarts. Hos phyllosilikaterne sker bindingen til siliciumatom nummer to dog kun i et plan, Figur 2.

Den anden grundlæggende enhed i phyllosilikaterne er et aluminiums octohedralt lag (micelle), som opbygges på samme måde, men her binder aluminium sig til 6 iltatomer. Man kan sige at Al³⁺ deler sine 3 positive ladninger med 6 iltatomer. Stoffet der er dannet, Al₂₆⁺₆⁻, er det anioniske phyllosilikat.


Når det således er muligt at erstatte en brintion i et octohedralt lag (micelle) med en siliciumion, er det logisk at forestille sig at de øvrige brintioner tilsvarende kan erstattes. Hermed dannes et 2:1 ler mineral, som består af 2 silicium miceller og en aluminium micelle. Mineraler af denne struktur tilhører Mica-gruppen, Figur 5.


Ovenstående er basis for forståelse af lerets opbygning, men virkeligheden er mere kompleks og der findes mange lertyper. Den mest markante forskel mellem typerne er, om de er opbygget af 1:1 eller 2:1. En anden faktor som skiller forskellige lertyper fra hinanden er såkaldt isomorf substitution, afsnit 4.1.1.
Figur 1 Rummet mellem de 4 iltatomer tillader netop Silicium at tage plads i midten.

Figur 2 Således dannes et lag af silicium-tetraeder.

Figur 3 Al(OH)₃ er den mineralske form af aluminiumhydroxid (Gibbsit)

Figur 4 Grundstrukturen i Kaolinit

Figur 5 Grundstruktur i lermineral tilhørende mica-gruppen

Figur 6 Lermineral tilhørende Chlorit-gruppen
4.1.1 ISOMORF SUBSTITUTION
Selvom iltionerne i orthosilikatlaget er pakket tæt sammen, skabes der, som det ses i Figur 7, plads når aluminium og ilt bindes sammen. For hver to sådanne bindinger er der en tom plads. Hvis alle tomme pladser besættes med diverlente ioner kaldes stoffet for et trioctahedralt mineral. Hvis der i stedet indgår trivalente ioner på to ud af tre pladser kaldes stoffet for et dioctahedralt mineral.

Tabel 1 viser de ioner der findes i phyllosilikater. Ionerne kan passe ind i enten de tetrahedrale eller oktahedrale strukturer. Det er muligt for den trivalente Aluminium at erstatte nogle af de tetravalente Silicium, hvilket fører til en ladning på -1 for hver substitution. Man kan også finde diverlente ioner i de oktaedriske lag i dioctahedrale mineraler og trivalente ioner i de trioctahedrale mineralers oktaedriske lag. I disse tilfælde vil resultatet være, en henholdsvis negativ og positiv ladning af krystalstrukturen.

![Figur 7 Når atomerne ordnes bliver der ledige pladser i gitterstrukturen.](image1)

<table>
<thead>
<tr>
<th>Almindeligt forekommende ioner</th>
<th>Lejlighedsvis forekommende ioner</th>
<th>Kationer der kan findes mellem lagene</th>
</tr>
</thead>
<tbody>
<tr>
<td>O²⁻</td>
<td>N¹⁺</td>
<td>Na⁺</td>
</tr>
<tr>
<td>Si⁴⁺</td>
<td>Ti⁴⁺</td>
<td>K⁺</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>Zn²⁺</td>
<td>Cs⁺</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>Mn²⁺</td>
<td>Ca²⁺</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>Mn³⁺</td>
<td>Ba²⁺</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Li⁺</td>
<td>H₂O</td>
</tr>
<tr>
<td>Cr³⁺</td>
<td>Sr²⁺</td>
<td>NH₄⁺</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figur 8 Metalliske kationer i mellemlaget mellem negativt ladede lag af 2:1 plader.](image2)

4.2 ADSORPTION OG ABSORPTION

4.2.1 FLOKKULERING OG DISPERGERING

Forskydningsstyrken i ler er hovedsaglig forårsaget af de tiltrækkende kræfter mellem lerpartiklerne. Dette skyldes, at det er de tiltrækkende kræfter, der binder lerpartiklerne sammen. Af denne grund kaldes ler også for kohæsionsjord.

Når ler dannes, er det de tiltrækkende og frastødende kræfter, der får lerpartiklerne til at orientere sig i forhold til hinanden. Hvis leret bliver pakket ind i et stort antal monovalente kationer, bliver partiklerne skubbet fra hinanden, der opstår dispergering. Hvis leret bliver iklædt divalent eller polyvalente kationer, vil der i stedet ske en samling af partiklerne i større fnug, der opstår flokkulering. I det sidste tilfælde danner leret basis for den meget gavnlige jordstruktur, som kaldes krummebestruktur. En optegning af disse strukturer ses i Figur 9 nedenfor.

![Flokkuleret struktur](image1.png) ![Dispergeret struktur](image2.png)

Figur 9 Lerstrukturer.


En yderligere kilde til ladning af lermineraler er brudte binder, der opstår når lagene opbrydes. Lagstrukturen kan ikke fortsættes i det uendelige og ved et brud vil ilatomerne ved brudkanten have frie negativt ladede binder. Ofte vil der være vand tilstede således at brintioner kan indgå forbindelser, men procesen er pH-afhængig. Hvis ilatomerne i stedet for brint binder flervalente stoffer kan kanterne på lerpartiklerne derfor blive positivt ladede, hvorved de kan tiltrække negativt ladede ioner. De positive og negative ioner bevirkende, at der er både tiltrækkende og frastødende kræfter i lingeretter. På grund af de frastødende og tiltrækkende kræfter mellem lerpartiklerne, er disse i vekselvirkning med hinanden. Hvis de positive ioner på leroverfladen erstattes af positive ioner med højere valens, bliver de tiltrækkende kræFTER øget.

4.2.2 KOLLOIDER, KVÆLDNING OG ELEKTRISKE TILTRÆKNINGSKRAFT

En af de vigtigste egenskaber ved ler er, udover dennes struktur, evnen til at binde vand. Vandmolekylerne kan være bundet til krystallagene og på lerets ydre overflade. Des mere vand der er bundet til krystallagene, des svagere bliver gitteret, og altså lerets stivhed. Vandmolekyler kan bindes ved brint, og atleret binder positivt, og atleret binder negativt, hvorved de kan tiltrække positivt ladede ioner. De positive og negative ioner bevirkende, at der er både tiltrækkende og frastødende kræfter i lingeretter. På grund af de frastødende og tiltrækkende kræfter mellem lerpartiklerne, er disse i vekselvirkning med hinanden. Hvis de positive ioner på leroverfladen erstattes af positive ioner med højere valens, bliver de tiltrækkende kræfter øget.

1 Konduktiviteten, eller den hydrauliske ledningsevne, har en stor variation for forskellige jordtyper, hvor sand og grus generelt har en høj konduktivitet, mens silt og ler har en lav konduktivitet.
Ler er kolloide stoffer, som er kendteget ved, at de kan findes i tre tilstandsformer:

- I fast form
- I gel og
- I opløsning.

Stofferne er faste og sprøde, når de tørrer ind. De bliver til gel, når de optager en vis mængde vand, og de danner kolloide opløsninger, når der er tilstrækkeligt vand. Kolloide stoffer er således ikke opløst i vandet, men svæver (suspenderet) i vandet. Husblas, pektin og agar er andre eksempler på kendte kolloider, men også humus er kolloidt.

Når de ekspanderende lertyper optager vand, svulmer de op, det kvælder\(^2\), siger man. Det er lertyper, der er opbygget af 2:1 plader der har denne egenskab. En af de mest almindelige er smectit, der er en hoved- bestanddel i bentonit, som blev benyttet i dette projekt.

Samtidig sker der en omfordeling af elektroner på lerpartiklernes overflade, sådan at hver partikel får en ladningssum, der er negativ. Dette forhold gør, at ler kan fastholde kationer på overfladen. Man taler i den forbindelse om lerets kationadsorptionskapacitet (= lerets evne til at påklistre/fange +ioner), eller på engelsk; Cation Exchange Capacity [CEC]. CEC - værdien er et udtryk for en jords egenskaber og sammensætning. Den måles eksperimentelt og opgives i cmol\(^+\) pr. kg jord, hvor en cmol\(^+\) er 1/100 mol H\(^+\). Danske sandjorde har en CEC-værdi på omkring 5 cmol\(^+\) pr. kg, mens morænejordens er 10-20 cmol\(^+\) pr. kg jord.

Lerfraktionens bestanddele har forskellig CEC-værdi, meget lav for pulveriseret kvarts og feldspat, under 10 cmol\(^+\) pr. kg, større hos lermineraler med lagdelt opbygning og størst hos humus, omkring 200 cmol\(^+\) pr. kg. Forskellige lertyper har derfor større eller mindre evne til at binde positive ioner.

\(^2\) Kväldningsvand, ældre udtryk for vand i jorden, som bindes til partikeloverflader, og som kan bindes i yderkanten af lerminerals gitterstruktur. I dag bruges udtrykket adhæsionsvand
Elektroneutralitet opnås ved, at partiklerne adsorberer en ækvivalent mængde kationer. De adsorberede kationer er hovedsagelig plantetilgængelige og ombyttelige\(^3\), dvs. de kan udveksles med andre kationer fra opløste salte i jordvæsken. Herpå beror jordens evne til at virke som filter for opløste saltes kationer, og herved kan jordens CEC-værdi måles.

I Figur 13 til Figur 15 illustreres hvordan en kvældet lerpartikel, med negativ ladning, bindes til divalente kationer og derved opnår en samlet positiv ladning, hvorefter dette ’aggregat’ kan bindes til f.eks. negativt ladede bakterier. I afsnit 5.6 beskrives hvordan der er udført forsøg med lertilsætning til vand i opdrætsanlæg.

\(^3\) Visse lertyper anvendes i ion-bytningsanlæg
De vigtigste kationer der indgår i ’udvekslingen’ er:

- Brint (H⁺)
- Calcium (Ca²⁺),
- Magnesium (Mg²⁺),
- Kalium (K⁺)
- Natrium (Na⁺)
- Aluminium (Al³⁺).

Alle, bortset fra brint, absorberes af planter i store mængder. Derfor er ler så vigtig for boniteten af jord.

4.2.2.1.2 FLOKKULERING

Adsorptionen af polyvalente kationer betyder, at de polyvalente kationer kan hægte flere kolloide molekyler sammen, så der opstår floks (småfnug) af kolloider med kationbelægninger. Disse fnug kan yderligere hæftes sammen med andre således at ‘aggregaterne’ vokser i størrelse og kan dermed fanges i et filter. Fænomenet kaldes flokkulering.


Figur 18 Moler optræder i en kolloid-opløsning. Bentonit er kvældet op.

Figur 19 Kvældet smectit (foto fra elektromikrop)
4.2.3 ABSORPTION

Ler fungerer næsten som en svamp, der under ekspansion suger væske ind. Absorptionen hos ler foregår dog langsomt – og meget langsommere end adsorptionen.


Absorption kan følge efter adsorption. Stoffer der er adsorberet til lerets overflade kan gennemgå kemiske forandringer der gør en absorption mulig. Samtidig lukkes lermolekylers struktur mere op (ekspanderer), hvilket også muliggør at større stoffer absorberes. Calsium-bentonit har en meget kraftig absorberende egenskab.

4.3 LERTYPER ANVENDT I PROJEKTET

4.3.1 BENTONIT


I bilag 09 findes datablad fra Dantonit for den i projektet anvendte Ca-bentonit ler.
4.3.1.1 SMECTIT
Smectit indgår som en hovedbestanddel af bentonit. Smectit er mikrokryssllinske lagsilikatmineraler, som omfatter en dioktaedrisk montmorillonit-undergruppe og en trioktaedrisk saponit-undergruppe. Smectitminderaler har relativt høj ionbytningskapacitet (CEC-værdi) og kan kvælde kraftigt op ved vandoptagelse, se beskrivelse i afsnit 4.1. De dioktaedriske mineraler af montmorillonit-gruppen er almindeligt forekommende i jord og sedimenter.

4.3.2 MOLER
Moler er også kendt som diatoméjord og kiselgur. Moler er en blød, silikatholdig sedimentær bjergart, med en kornstørrelse fra typisk 10 til 200 mikrometer. Moler er dannet ved blanding af aflejringer af kiselskelettet fra kiselalger samt sedimentet vulkansk aske. Den typiske kemiske sammensætning af ovntørret moler er 80 til 90 % silicium, med 2 til 4 % aluminiumoxid, der primært kommer fra leamineraler samt 0,5 til 2 % jernoxid.

Moler anvendes som filtermateriale, som slibemiddel, som insekticid, som absorberende stof til opsugning af væsker, som stabiliserende bestanddel i dynamit og som termisk isolator. Herudover som tilsætning til animalsk foder for at optage, fastholde og frigive flydende ingredienser som vitaminer, syrer, fedt og vand og for at optimere foderpille-kvaliteter.

Datablad for moler, der er anvendt i dette projekt, findes i bilag 10.
<table>
<thead>
<tr>
<th></th>
<th>Moler</th>
<th>Bentonit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Produktnavn</strong></td>
<td>Entomol 100 G</td>
<td>DantoCon Pure C</td>
</tr>
<tr>
<td><strong>Lertype</strong></td>
<td>Ikke-ekspanderende Diatoméjord/Kiselgur</td>
<td>2:1, ekspanderende Ca-bentonit</td>
</tr>
<tr>
<td><strong>Rumvægt, tørret</strong></td>
<td>Ca. 300 g/l</td>
<td>Ca. 500 g/l</td>
</tr>
<tr>
<td><strong>Overfladeareal</strong></td>
<td>Relativ lav; Ca. 50 M2/gram</td>
<td>Meget høj; (200-750) M2/gram</td>
</tr>
<tr>
<td><strong>CEC værdi</strong></td>
<td>Relativ lav; Ca. 52 me/100 g</td>
<td>Meget høj; (80-150) me/100 g</td>
</tr>
<tr>
<td><strong>Opblanding, relativt</strong></td>
<td>Nem, dispergerer</td>
<td>Lidt svær, vil gerne kvælde</td>
</tr>
<tr>
<td><strong>Bundfældning, relativt</strong></td>
<td>En hurtig fraktion og en meget Langsom fraktion</td>
<td>Relativ hurtig</td>
</tr>
<tr>
<td><strong>klaæbeegenskaber</strong></td>
<td>Begrænset, nem at skyle af hænderne</td>
<td>Meget klistrende, sværere at vaske af hænderne</td>
</tr>
<tr>
<td><strong>pH (10% vandig opslemning)</strong></td>
<td>4,5</td>
<td>7,5</td>
</tr>
<tr>
<td><strong>Ca. pris pr kg + fragt og moms</strong></td>
<td>2,5-3 kr/kg ved køb af 1.000 kg</td>
<td>2,5-3 kr/kg ved køb af 1.000 kg</td>
</tr>
<tr>
<td><strong>Fås i 25 kg sække</strong></td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td><strong>Leverandør</strong></td>
<td>DAMOLIN A/S</td>
<td>Dantonit A/S</td>
</tr>
</tbody>
</table>

Tabel 2: Data for de to lertyper der er anvendt i projektet. (Bemærk at der fås mange andre varianter af de 2 lertyper.)
5 OBSERVEREDE EFFEKTER AF LERTILSÆTNING I AKVAKULTUR

I forbindelse med nærværende projekt er der lavet en lang række forsøg med tilsætning af ler til vand, hvor der opdrættes fisk. Langt stærkestellen af forsøgene er foregået på AquaPri’s sandartanlæg i Egtved, som er et lukket recirkuleret anlæg med et vandforbrug på under 100 l/kg foder der anvendes.

Figur 22 Udsnit af et forsøgsanlæg hos AquaPri Innovation i Egtved.

5.1 GASSER I VAND

Tilsætning af ler til opdrætsvandet havde ingen betydning for iltindhold og totalgas i vandet. Både moler og bentonit består altovervejende af uorganiske forbindelser og tilsætning til vand påvirker derfor ikke ilforbrug som f.eks. organiske partikler gør.

5.2 DE ALMINDELIGE KEMISKE VANDKVALITETSPARAMETRE

I forbindelse med recirkuleret fiskeopdræt overvåges normalt følgende vandkemiske parametre: Ammonium, nitrit, nitrat, pH, alkanitet og i særlige tilfælde også jern og fosfat. For at teste om nogle af disse parametre blev påvirket af lerbehandling er der udført en række forsøg med henholdsvis moler og Ca-bentonit tilsat vandet i forskellige koncentrationer fra 10 til 100 gram/ m³. For tillige at undersøge om en mulig effekt var afhængig af pH eller saltindhold i opdrætsvandet, blev en række forsøg lavet, hvor pH og saltindhold tillige blev inddraget som variabel.

5.2.1 AMMONIUM

Der er ikke noget der tyder på at de 2 benyttede lertyper på nogen måde er i stand til at binde ammonium. Der er i nærværende projekt udført mange forskelligartede forsøg, hvor ammonium er blevet målt i vandprøver før og efter lertilsætning uden at der kunne påvises en effekt deraf.

Det kan dog ikke udelukkes at nogle recirkulerede akvakulturanlæg vil kunne opnå en forbedret omsætning af ammonium i biofiltnere ved jævnlig anvendelse af lerbehandling, men det vil så skyldes afdelte effekter. Der er 2 mulige afdelte effekter; for det første vil en del af leret sætte sig i biofiltnere som derved opnår et større overfladeareal og dermed potentielt større omsætningsareal. Den anden effekt er lerets evne til
“klare vandet op” og dermed sænke indholdet af organisk stof. I det omfang leret gennem “klæbning” kan bidrage til mere effektiv partikelfjernelse i eksisterende partikelfiltrering vil biofilteret blive mindre belastet i forhold til heterogen omsætning og dermed “frigives” der areal til nitrifikation. Det vil kræve yderligere undersøgelser inden betydningen af ovenstående 2 effekter er klarlagt.

5.2.2 NITRIT OG NITRAT
Der er ikke blevet påvist nogen form for nitrit- eller nitratfjernelse ved lerbehandling i projektet.

5.2.3 ALKANITET OG PH
Ved anvendelse af doseringer af ler under 100 g/m³ er ændringer i pH og alkanitet ubetydelige og næsten ikke målelige. Ved tilføjelse af store mængder (f.eks. 10 kg ler / m³ vand) resulterer moler i en pH- og alkanitetssænkning pga. kiselsyre i moleret. Bentonit i store doser hæver pH og alkaniteten en smule.

5.2.4 FOSFOR
Intern rensning for fosfor forekommer kun på anlæg med ekstrem høj recirkuleringsgrad (under 100 l/kg foder). For anlæg med udledning til recipient kan fældning af fosfor være interessant som et element til forbedret slutrensning.

Både moler og bentonit ser ud til at kunne binde fosfor i et vist omfang omend effekten er markant tydeligere ved høje ler doseringer (over 1 kg/m³). Ved prøver sendt til analyse på laboratorium fandtes der reduktioner af fosforindholdet på op til 50 % ved lerbehandling med meget høje doser (10 kg/ m³). Reduktionen var ens for både moler og bentonit. I forbindelse med egne analyser, hvor der er analyseret for fosfat var resultaterne meget varierende. Der blev både konstateret små reductioner, men også stigninger af fosfat som konsekvens af at lade prøverne henstå nogle timer inden analyse. Efter at have konsulteret laborant vedr. dette fænomen blev vi klar over, at analyser baseret på fosfatindhold har begrænset udsagnsværdi om det aktuelle fosforindhold i prøverne, hvilket skyldes at fosfor næsten konstant er bundet til andre stoffer og dynamikken i deri gør resultaterne meget metodeafhængige.

Der findes på markedet allerede et bentonit baseret produkt til fældning og binding af fosfor i f.eks. ør. Produktets navn er Phoslock® og af firmaets hjemmeside, www.phoslock.eu, fremgår det, at bentoniten er modificeret med Lathanium, som er en trivalent ion (La+++), og at det primært er gennem dannelsen af det tungtopløselige lathaniumfosfat at bindingen af fosfor sker. Ud fra vores egne observationer er grund til at formode at bentonit i sig selv er i stand til at binde fosfor, men at effekten kan øges markant ved modifikation.

5.3 SPORSTOFFER
Fra litteraturen findes der mange beskrivelser af at forskellige lertyper (specielt bentonittyper) kan binde tungmetaller som f.eks. bly, cadmium og kviksølv. I daglig drift indenfor akvakultur er der normalt ikke megen fokus på tungmetaller. Det hænder dog at der findes forhøjede koncentrationer af cadmium i slam fra fiskeproduktion i forbindelse med de obligatoriske slamanalyser. For at undersøge forekomsten af en række almindelige forekommende sporstoffer (primært metaller og ikke kun tungmetaller) og lerbehandlingseffekt på dette indhold i vand fra recirkuleret fiskeopdræt, blev der lavet en screening af 26 stoffer. Analyserne blev udført af akkrediteret laboratorium Lennart Månsson i Sverige, www.lmiab.com. Forsøgets primære formål var at få en fornemmelse af, hvorvidt der kunne identificeres målbare effekter og der blev derfor anvendt høje ler doseringer i forhold til de øvrige forsøg, der er lavet i nærværende projekt. For både moler og bentonit blev der anvendt 2 doseringer på henholdsvis 1 og 10 kg ler pr m³ vand, hvor der normalt opereres i niveuuet 25-50 gram/m³.
5.3.1 RESULTATER
I nedenstående Tabel 4 er resultaterne opstillet så effekten af lerbehandlingen illustreres. De aktuelle værdier er udeladt af hensyn til overskueligheden.

<table>
<thead>
<tr>
<th></th>
<th>Ingen effekt af behandling</th>
<th>Reducering, svag</th>
<th>Reducering, moderat</th>
<th>Reducering, kraftig</th>
<th>Forøgelse, svag</th>
<th>Forøgelse, moderat</th>
<th>Forøgelse, kraftig</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3 Vurderingsmetode for evaluering af sporstofferens reaktion ved lertilsætning

<table>
<thead>
<tr>
<th></th>
<th>Ikke målbare koncentrationer</th>
<th>Moler</th>
<th>Bentonit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanadium</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kviksølv</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crom</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsen</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismut</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bly</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selen</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cobolt</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strontium</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Natrium</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calcium</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kalium</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Svolv</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wolfram</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Molybdæn</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nikkel</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fosfor</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kobber</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zink</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bor</td>
<td>0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Mangan</td>
<td>++</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Jern</td>
<td>+++</td>
<td>++</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4 Sporstofferne kan grupperes i 4 grupper mht. deres reaktion ved lerbehandling
Som det fremgår af ovenstående Tabel 4 kan de undersøgte stoffer inddeles i 4 grupper;

- En række stoffer der forekom i så lave koncentrationer at de lå under analysemetodens detekitions-grænse. Tungmetallerne bly, cadmium og kviksølv var heldigvis placeret i denne gruppe, hvilket resulterede i at det ikke var muligt at dokumentere effekt af lerbehandling på disse stoffer.
- Derefter følger en større gruppe af stoffer, hvor der ikke kunne måles nogen effekt af lerbehandling. Ingen af stofferne i denne gruppe kræver normalt årvågenhed i relation til fiskeopdræt.
- Den 3. gruppe er karakteriseret ved en lav reduktion (20-50 %) af stofferne som følge af lerbehandling. Interessant er det, at det er stoffer som typisk vil akkumuleres i recirkulerede anlæg; nikkel, fosfor, kobber og zink. Det hersker nogen usikkerhed om, hvilke koncentrationer der er skadelige i relation til forskellige fiskearter, men der er en vis enighed om, at de kan være skadelige i forhøjede koncentrationer.
- Den sidste gruppe udgøres af stoffer hvis koncentration blev moderat til kraftigt forøget som effekt af lerbehandling, hvilket må tolkes som et kanske hurtigt forøget spil af disse stoffer.

Som det fremgår af ovenstående Tabel 4 kan de undersøgte stoffer inddeles i 4 grupper;

- En række stoffer der forekom i så lave koncentrationer at de lå under analysemetodens detekitions-grænse. Tungmetallerne bly, cadmium og kviksølv var heldigvis placeret i denne gruppe, hvilket resulterede i at det ikke var muligt at dokumentere effekt af lerbehandling på disse stoffer.
- Derefter følger en større gruppe af stoffer, hvor der ikke kunne måles nogen effekt af lerbehandling. Ingen af stofferne i denne gruppe kræver normalt årvågenhed i relation til fiskeopdræt.
- Den 3. gruppe er karakteriseret ved en lav reduktion (20-50 %) af stofferne som følge af lerbehandling. Interessant er det, at det er stoffer som typisk vil akkumuleres i recirkulerede anlæg; nikkel, fosfor, kobber og zink. Det hersker nogen usikkerhed om, hvilke koncentrationer der er skadelige i relation til forskellige fiskearter, men der er en vis enighed om, at de kan være skadelige i forhøjede koncentrationer.
- Den sidste gruppe udgøres af stoffer hvis koncentration blev moderat til kraftigt forøget som effekt af lerbehandling, hvilket må tolkes som et kanske hurtigt forøget spil af disse stoffer.

5.4 ØVRIGE STOFFER

5.4.1 GEOSMIN
Fra litteraturen er der en række eksempler på stoffer som kan bindes til ler. Af forskellige stoffer som har vist sig mulige at binde med primært bentonit kan f.eks. nævnes; positivt ladede proteinstoffer (i forbindelse med klaring af vin), mineralsk olie og algetoksiner. Med baggrund deri blev det fundet interessant at lave en screening af molers og bentonits evne til at binde geosmin. Geosmin i små doser i opdrætsvandet (10-20 nanogram/liter) forårsager bismag i fiskene og nødvendiggør ’afsmagning’ af fisken inden levering (fisken flyttes til kar, hvortil der tilledes frisk garanteret geosminfrit vand). Fiskene sultes i denne periode). Den primære kilde til geosmin i vandet er blågrønalger/cyanobakterier.


Resultaterne indikerer at der en vis effekt af moler. Gennemsnittet af prøverne udtaget fra molerbehandling ligger 24 % lavere end kontrollen, mens gennemsnittet for bentonit viser samme niveau som kontrollen. Der er ikke nogen klar effekt af tid udover at koncentrationen efter 1 time måles lavere end ved forsøgets start. Ideen med at måle til forskellige tidspunkter var en hypotese om at eventuelle bindinger mellem geosmin og ler måske ville øges ved længere behandlingsstid. Der er imidlertid ikke noget der tyder på at behandlingsstid længere end 1 time har nogen positiv effekt – snarere tværtimod.

På baggrund af ovenstående resultater som indikerede en vis effekt af moler blev det besluttet at lave et nyt forsøgs-setup. Denne gang skulle der bruges vand fra et model 3 dambrug i stedet for destilleret vand. Tanken var at gøre forsøget mere praksisnært og samtidig få en fornemmelse af, om den langt mere komplekse vandkemi spillede nogen rolle for eventuel binding af geosmin. Endvidere blev det besluttet at afprøve forskellige doseringer af henholdsvis moler og bentonit. For at sikre et vist indhold af geosmin blev der til dambrugsvandet tilsat geosmin fra en stamopløsning svarende til 100 nanogram/liter.


Som i den første forsøgsrække er resultaterne ikke entydige og der bør ikke konkluderes for kraftigt på baggrund af den begrænsede mængde forsøg. Ud fra gennemsnittet af prøverne over tid og koncentration ligger værdierne for moler igen ca. 23 % lavere end værdierne i kontrollen og gennemsnittet ved anvendelse af bentonit, hvilket svarer til observationerne i det første forsøg. Som i første forsøgsrunde er der ikke nogen klar positiv effekt af behandlingstid udover 1 time. Effekten af koncentrationsforøgelse af ler er også
uklar. For Bentonits vedkommende kan der spores en reducerende effekt ved stigende lerkoncentration for målingerne efter 4 timer, men uden gentagelse i forsøget er det ikke muligt at sige om det er en tilfældighed eller ej.

På baggrund af det brogede billede fra geosminforsøget anbefales det i første omgang at fokusere på at optimere prøveudtagning og analysemetode for derved at bestemme metodens usikkerhed og arbejde på at minimere denne. Dernæst er det bestemt relevant med yderligere undersøgelser af effekten af forskellige lerbehandlinger i relation til at binde geosmin. De opnåede resultater indikerer en el. anden form for effekt, hvilket berettiger øget fokus på dette område. Der er behov for en bedre afklaring af effektenes størrelse, eventuelle bindingernes karakter og muligheder for at optimere effekten gennem produktudvikling. Et biligt middel til geosminreduktion er ikke kun interessant for akvakultur, det store marked gælder rensning af drikkevand. I store dele af verden bruges der store summer på at rense overfladedrikkevand for geosmin vha. aktivt kul, som er en relativ dyr metode at anvende.

**5.4.1.1 YDERLIGERE FORSØG MED GEOSMIN**


**5.5 MIKROBIOLOGISKE PARAMETRE**

**5.5.1 INDLEDENDE BETRAGTNINGER LEDR. BAKTERIER I OPDRÆTSVAND**

Baggrunden for at undersøge lers effekt på bakterier i opdrætsvand var nogle prøveanalyser fra Orbicon som indikerede at lerbehandling reducerede mængden af partikler og bakterier i vandet. I recirkuleret fiskeopdræt anvendes der ofte UV behandling af vandet for populært sagt at begrænse mængden af bakterier i vandet. Hvis lerbehandling kunne gøre det samme ville lerbehandling måske kunne erstatte UV behandling i nogle tilfælde. UV behandling er relativt dyrt i anskaffelse, løbende drift og vedligeholdelse.

At der findes bakterier i opdrætsvand er helt naturligt. Patogene bakterier er uønskede, mens bakterier der fremmer omsætningen af fiskenes affaldsstoffer som udgangspunkt er velkomne. Målet med vores undersøgelser var dog begrundet til at finde ud af om lerbehandling kunne reducere bakteriemængden i opdrætsvandet uden at skelne mellem "gode" og "dårlige" bakterier. Det viste sig hurtigt at det ikke var så let til at blive klogere på bakterier i opdrætsvand. Allerede ved valg af analysemetode var der flere muligheder med forskellige styrker og svagheder.

**5.5.1.1 METODER TIL ANALYSE AF USPECIFIKT BAKTERIENIVEAU**

Til uspecifik bestemmelse af bakterieniveau i vandprøver er der grundlæggende 3 forskellige metoder:

- ”Kimtal 22”, som er den traditionelle metode, hvor en vandprøve fortyndes til passende niveau og fordeles på agarplader, som dernæst inkuberes ved 22 grader 3-4 dage, hvorefter bakterietallet opgøres ved at tælle fremkomne kolonier. Denne metode viste sig uegnet til nærværende analyse af flere grunde. For det første detekterer metoden normalt under 1 %, af de bakterier der i tilfælde vil skyltes, at kun de bakterier, der kan vokse på den givne agar under de givne forhold, vil danne kolonier. For det andet vil partikelbundne bakteriekolonier kun udlose én koloni pr. partikel -

- En anden metode til bestemmelse af bakterieniveau er tælling vha. epifluorosensmikroskop. En vandprøve forsynges til passende niveau og vha. kemikalietilsætning til prøven ”farves” bakteriernes DNA. Ved efterfølgende belysning udsendes der fluorescens og bakterierne kan tælles i mikroskop. Metoden største styrke er, at den giver et godt estimat for antallet af bakterier i prøven eftersom der tælles direkte på dem. Ulempene er, at det nødvendige udstyr er dyrt (over kr. 200.000) samt, at det er svært at bestemme antallet af partikelbundne bakterier som findes i tætte kolonier. Det tager tid at tælle bakterierne i prøverne, som sammenholdt med prisen på udstyret gør metoden relativt dyr (> 2000 kr/prøve).

- En tredje, relativ ny, metode fra det danske firma ”Mycometer” giver mulighed for hurtige resultater og måling af partikelbundne bakterier. Metoden hedder BactiQuant® og fungerer ved at måle på enzymaktivitet i vandprøven. Aktiviteten måles ved hjælp af et syntetisk enzymsubstrat, som når det nedbrydes af et bakterieenzyme frigiver et stof (fluorophor), der kan bringes til at fluorescere (udsende lys). Ved tilstedeværelse af bakterier vil substratet spaltes. Måling af fluorescensen giver et mål for mængden af bakterier i prøven. Metodens ulempe er, at enheden der måles i (BQ-værdi) er en relativ værdi, som ikke umiddelbart kan konverteres til det specifikke antal bakterier. Der fås med andre ord en relativ værdi, som udtrykker om der er mange eller få bakterier i prøven. Til gengæld er BQ-tallet en standardiseret enhed, som kan sammenlignes på tværs af prøveoprindelser. Metoden er enkel og hurtig (en enkelt analyse tager ca. 45 min. og 5 stykk kan laves på 1 time). Anskaffelsesprisen på udstyret er ca. 35.000,- kr og hver analyse koster ca. 100,- kr i materialeudgifter.

I nærværende projekt er bakterieanalyser primært lavet vha. BactiQuant® metoden, mens forsøget med renkultur af Aeromonas er udført hos Orbicon ved anvendelse af epifluorescensmikroskopi.

Nogle indledende forsøg med lerbehandling og analyse af BQ værdier indikerede en halvering af bakterier i opdrætsvandet efter behandling. Med hjælp fra Mycometer i København blev det klart for os, at tidsrummet fra udtagning af prøve til selve analysen havde stor betydning for resultaterne/mængden af bakterier. Ved at lade vandprøverne stå ved stuetemperatur skete der ofte en voldsom vækst i løbet af nogle timer, for at nå et maksimum efter 24-30 timer, hvorefter antallet faldt igen.

De indledende forsøg afslørede tillige et særdeles interessant forhold i relation til bakterier i opdrætsvand. Ca. 90 % af bakterierne er tilsyneladende knyttet til partikler og vækstpotentialiet for bakterievækst fjernes mest effektivt gennem partikelfjernelse. Logisk set giver det god mening: Bakterierne er der hvor ”madpakken” er. Som det fremgår af bilag 01 blev der målt BQ værdier i niveauet 2-3000 i opdrætsvandet, mens der kunne måles værdier på over 500.000 i spulevandet fra mikrosigten. Ved at måle på prøverne over tid kunne det konstateres, at mikrosigten var det enkeltelement som havde størst effekt på at reducere vækstpotentialiet for bakterierne, den fjernede simpelthen en stor del af ”madpakken”. Det bør ikke umiddelbart komme som nogen overraskelse eftersom det jo netop er mikrosigturens opgave at fjerne partikler, men BactiQuant metoden har givet os en helt ny måde at måle effektiviteten og betydningen af partikelfjernelse i opdrætsvand. Ved at uddybe BactiQuant metoden i recirkuleret fiskeopdræt har vi nu mulighed for indirekte at måle de enkelte rensningskomponenters evne til at fjerne skift/næring fra systemet. Det åbner op for nye muligheder for at optimere dimensioneringen af de enkelte komponenter i vandbehandlingen.
5.6  FORSØG MED LER TIL FJERNELSE AF BAKTERIER

De fleste bakterier er meget små (< 1 µm) og det forventes at lerbehandling kan anvendes til at fjerne bakterier fra vandet i opdrætsanlæg ved at bakterierne (frie og i klumper) flokkulerer med leret så der dannes store partikler/aggregater som synker ud af vandfasen/sedimenteres og som kan samles op på mikrosigten. Ler anvendes ved flokkulering af spildevand, se f.eks. [http://www.youtube.com/watch?v=DUTX7G7wlU](http://www.youtube.com/watch?v=DUTX7G7wlU) men der er få referencer på lers effekt på renkulturer af frie bakterier, se dog (Bitton 1976).

5.6.1  DELFORSØG 1: BAKTERIENIEVAU I FORHOLD TIL LER OG SALTBEHANDLING

5.6.1.1  FORMÅL OG FORSØGBESKRIVELSE

Forsøgets formål var at undersøge om de 2 lertyper - moler og bentonit - i forskellig koncentrationer kunne reducere mængden af bakterier i opdrætsvand samt undersøge om saltholdigheden påvirkede effekten.


<table>
<thead>
<tr>
<th>Kar</th>
<th>Lertype:</th>
<th>Lerkonc.</th>
<th>salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kontrol</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Moler</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Moler</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Moler</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Moler</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Moler</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Moler</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Moler</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Moler</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Kontrol</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Kontrol</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>Bentonit</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Bentonit</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>Bentonit</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>Bentonit</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>Bentonit</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Bentonit</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>Bentonit</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>Bentonit</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>Kontrol</td>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabel 5 Behandlingsoversigt for forsøg med moler, bentonit og salt.
RESULTATER OG DISKUSION

5.6.1.2 BQ I SUPERNATANT I FORHOLD TIL OMRYSTEDE PRØVER

Forsøgets resultater er samlet i bilag 02.

Violette søjler repræsenterer BQ værdier i omrystede prøver
Grønne søjler er BQ i supernatant.

Bakterieniveauet (BQ) var væsentlig højere i de omrystede prøver i forhold til BQ i supernatantenerne. For molers vedkommende er værdierne 2 til 5 gange så høje i omrystede prøver i forhold til supernatanten, mens de for bentonit er 4 til 10 gange så høje. Bakterierne i prøverne er med andre ord i høj grad lokaliseret til partikulært materiale der kan udskilles ved bundfældning (alternativt filtrering). Samme forhold gør sig gældende for kontrolbehandlingerne uden ler, men i væsentlig mindre omfang end i de lerbehandlede prøver.

BQ værdierne i de omrystede prøver var generelt højere i de lerbehandlede kar end i kontrolkarrene uden lerbehandling. Det indikerer isoleret set at tilsætningen af ler fremmer væksten af bakterier, hvis ikke det partikulære stof fjernes fra systemet. Det kan skyldes 2 forhold: for det første kan leret i sig selv udgøre et positivt vækstmedium for bakterierne el. det kan være at kombinationen af ler og organisk partikulært materiale fremmer bakterievæksten, hvor leret bidrager med overfladeareal til vækst og det organiske materiale udgør vækstmediumet.

5.6.1.2.2 BQ I OMRYSTEDE PRØVER IFT LERTYPE, LERKONCENTRATION OG SALTHOLDIGHED

BQ værdierne i de omrystede prøver var markant højere i de bentonit behandlede kar end i karrerne behandlet med moler. Umiddelbart haves der ikke nogen forklaring derpå, men det er interessant i sig selv at de 2 lertyper giver et markant forskelligt resultat.

En øget koncentration af ler gav en øget BQ værdi for både moler og bentonits vedkommende. Relativt set var den største for moler, hvor en koncentrationsændring fra 25 til 100 g/m³ resulterede i 100 % stigning af BQ værdien, mens samme koncentrationsforøgelse i bentonit kun resulterede i 25 % stigning i BQ værdien.

Saltholdigheden havde tilsyneladende ingen effekt på BQ værdierne i de omrystede prøver, og der var derfor ikke grundlag for at konkludere at saltkoncentrationer på op til 30 ‰ i sig selv reducerede bakterieniveauet el. vækstgrundlaget for bakterievækst.

5.6.1.2.3 BQ I SUPERNATANTEN IFT LERTYPE, LERKONCENTRATION OG SALTHOLDIGHED

Effekten af lerbehandling alene på BQ værdierne i supernatanten er tilsyneladende ikke eksisterende, mens der er markant lavere BQ værdier i supernatanten som følge af stigende saltholdighed. Dette forhold gælder for begge lertyper og begge koncentrationer af ler. Øget saltholdighed i karrerne uden ler giver også lavere BQ værdier, hvilket umiddelbart indikerer at øget saltholdighed er den mest effektive måde at reducere bakterieniveauet på i nærværende forsøg. Men det stemmer ikke overens med resultaterne fra de omrystede prøver, hvor der langtfra var nogen entydig reducerende bakterieeffekt som følge af øget saltholdighed. De omrystede prøver indikerede på ingen måde at bakterievæksten blev hæmmet som følge af stigende saltholdighed. Resultaterne indikerer derfor snarere at det er kombinationen af ler og salt der reducerer bakterieniveauet i supernatantenerne. Mest markant er effekten for bentonit, hvor BQ værdierne falder proportionalt med øget lerkoncentration og øget saltholdighed. Det skal i den forbindelse advares mod at anvende saltbehandling på over 10 ‰ i opdrætsanlæg med ferskvandfisk!!
5.6.1.2.4 KONKLUSION DELFORSØG 1

I dette forsøg kunne det konstateres at tilsætning af ler øgede bakterieniveauet og jo mere ler des flere bakterier. Bentonit gav flere bakterier end moler. Bakterierne var altovervejende lokalisert til partikulært bundfældeligt materiale. Øget saltholdighed op til 30 % reducerede ikke bakterieniveauerne i kar med ler, men kombinationen af ler og salt resulterede i lavere bakterieniveauer i supernatanterne.

5.6.2 DELFORSØG 2: BAKTERIENIVEAU IFT KVÆLDET/UKVÆLDET LER

5.6.2.1 FORMÅL OG FORSØGSBESKRIVELSE

Forsøgets formål var at undersøge om det havde nogen effekt på bakterieniveauerne om leret havde fået lov at kvælde (suge vand til sig) inden det blev tilsat til opdrætsvandet.


<table>
<thead>
<tr>
<th>Kar</th>
<th>Lertype:</th>
<th>Lerconc.</th>
<th>Kvældning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kontrol</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Moler</td>
<td>25</td>
<td>kvælet</td>
</tr>
<tr>
<td>3</td>
<td>Moler</td>
<td>25</td>
<td>ukvælet</td>
</tr>
<tr>
<td>4</td>
<td>Moler</td>
<td>100</td>
<td>kvælet</td>
</tr>
<tr>
<td>5</td>
<td>Moler</td>
<td>100</td>
<td>ukvælet</td>
</tr>
<tr>
<td>16</td>
<td>Kontrol</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Bentonit</td>
<td>25</td>
<td>kvælet</td>
</tr>
<tr>
<td>18</td>
<td>Bentonit</td>
<td>25</td>
<td>ukvælet</td>
</tr>
<tr>
<td>19</td>
<td>Bentonit</td>
<td>100</td>
<td>kvælet</td>
</tr>
<tr>
<td>20</td>
<td>Bentonit</td>
<td>100</td>
<td>ukvælet</td>
</tr>
</tbody>
</table>

Tabel 6 Behandlingsoversigt for forsøg med kvældet og ukvældet ler.

5.6.2.2 RESULTATER OG DISKUSION

BQ målingerne er samlet i bilag 03

5.6.2.2.1 EFFEKT AF KVÆLDNING

Der kunne ikke påvises nogen entydig effekt på bakterieniveauerne i forhold til om leret havde haft tid til at kvælede eller ej før tilsætning til karrene. I de omrystede prøver med bentonit kunne der dog iagttages en tendens til at BQ værdierne var højest i karrene med opkvældet Bentonit. Det kan måske skyldes at det kvælede ler havde et større tilgængeligt overfladeareal tilgængeligt for bakterievækst end det ukvælede ler.
5.6.2.2 **BQ i supernatant IFT omryste prøver**

BQ værdierne er de grønne søjler i bilag 03, mens de omryste prøver har violette søjler. I lighed med forsøget med salt og ler, kunne der måles markant højere bakterieniveau i de omryste prøver sammenlignet med supernatanterne. Dette gjaldt for både kar behandlet med ler samt de 2 kontrolkar uden ler. Det stemmer godt overens med at en stor del af bakterierne er partikelbundne.

5.6.2.3 **BQ i omryste prøver IFT lertype, lerkoncentration**

BQ værdierne er de violette søjler i bilag 03. Tilsætning af ler øgede bakterieniveauet i de omryste prøver i forhold til kontrolkarrene. Effekten var mest markant for bentonit, men også tydelig for moler. For begge typer af ler betød højere lerdosis højere BQ værdi.

5.6.2.4 **BQ i supernatant IFT lertype, lerkoncentration**

BQ værdierne er de grønne søjler i bilag 03. BQ værdierne i supernatanterne var ikke lavere i de lerbehandlede kar i forhold til karrene uden lertilsætning, for bentonits vedkommende var værdierne endda højere. Der kunne således ikke umiddelbart påvises nogen bakteriereduktion i supernatanterne som følge af lerbehandlingerne.

5.6.2.5 **Konklusion delforsøg 2**

Som i det foregående forsøg kunne der i dette forsøg konstateres, at tilsætning af ler øgede bakterieniveauet og jo mere ler des flere bakterier. Bentonit forøgede bakterieniveauet mere end moler. Bakterierne var altovervejende lokalisert til partikulært bundfældet materiale.

På baggrund af resultaterne i delforsøg 1 og 2, hvor tilsætning af ler forøgede bakterieniveauet i de omrystede prøver og samtidig ikke reducerede bakterieniveauet i supernatanterne, blev det bestemt, at undersøge effekten af tidsperspektivet indflydelse. Der var behov for at undersøge om den benyttede tid til bundfældning var tilstrækkelig til at sikre en ordentlig bundfældning eller om bakterieniveauet i supernatanterne ville reducieres, hvis bundfældningstiden blev øget.

5.6.3 **Delforsøg 3: Bakterieniveau i supernatant IFT ler og fældningstid**

5.6.3.1.1 **Formål og forsøgsbeskrivelse**

Forsøgets formål var at undersøge om det havde nogen effekt på bakterieniveauerne i supernatanterne, hvor længe prøverne fik lov at henstå til bundfældning.

Forsøget blev udført i forsøgsanlægget hos AquaPri Innovation i Egtved. 6 tanker med hver 50 liter vand fra opdrætsanlæg blev tilsat ler i koncentrationer som beskrevet i bilag 04. Tankene blev beluftet for at holde leret i suspension. Efter 6 timers behandling blev der udtaget 4 dl vandprøver fra hvert kar, og de blev henstillet til bundfældning ved 21°C. Efter henholdsvis 4, 8 og 22 timer blev der udtaget 10 ml af supernatanterne som blev analyseret vha. BactiQuant metoden.

5.6.3.2 **Resultater og diskussion**

5.6.3.2.1 **Effekt af tid**

Forsøgets resultater fremgår af bilag 04. Der sker en stigning i bakterieniveauet som følge af henstand ved stuetemperatur. De første 8 timer er væksten behersket, men efter 22 timers henstand er bakterieniveauet vokset meget kraftigt. Det kan derfor konkluderes at der findes et betydeligt vækstpotentiale i prøverne, der er med andre ord en god "madpakke" for bakterievækst også selvom at det tilsette ler udfældes.
5.6.3.2.2 EFFEKT AF LERTYPE OG KONCENTRATION

Den kraftige stigning i bakterieniveauet over tid er mest markant for moler. Dette skyldes formentlig at netop moler er meget længere tid om at bundfælde end bentoniten er (se afsnit om de 2 lertyper). For mølers vedkommende kunne der selv efter 22 timers henstand iagttages at supernatanten var “støvet”, hvilket skyldes, at de fineste partikler fra moleret endnu ikke var fuldt ud sedimentet. Den ufuldstændige sedimentering kombineret med erfaringerne fra tidligere om at den største andel af bakterierne er bundet til partikler kan være forklaringen på de relative høje BQ værdier i prøverne med moler sammenlignet med bentonit.

Der var en markant effekt på BQ værdierne som resultat af lertilsætning i forhold til kontrollen uden lerbehandling. Effekten var større for bentonit end for moler og effekten kraftigere des højere lerkoncentration for begge lertypers vedkommende. Effekten var gældende for alle 3 tidspunkter der blev lavet analyser på, men tydeligst efter 22 timer. Fra delforsøg 1 og 2 kunne det konstateres at lertilsætning i sig selv ikke hæmmer bakterievæksten (bakterierne vokser fint, når der er ler tilstede). Dette sammenholdt med at effekten af lerbehandling bliver tydeligere over tid, må betyde at lerbehandlingerne først og fremmest reducerer bakteriernes vækstgrundlag = madpakken. For at opnå en bakteriereducerende effekt af lerbehandling skal partiklerne stadig fjernes fra systemet, men tilægning af ler kan gøre det nemmere at fjerne partiklerne, fordi leret gør dem “større” og mere “klæbrige”.

5.6.4 DELFORSØG 4: BAKTERIENIVEAU I 2 RECIRKULERede ANLÆG

5.6.4.1 FORMÅL OG FORSØGBESKRIVELSE

Forsøgets formål var at undersøge om lerbehandling i 2 mindre fuldt recirkulerede anlæg kunne reducere bakterieniveauet udtrykt ved BQ værdier. Begge anlæg var i normal drift hos AquaPri Innovation i Egtved. Det ene anlæg ”weaning”4 havde et totalt vandvolumen på 80 m³, mens det andet ”ongrowing”5 havde et totalt vandvolumen på 360 m³. Begge anlæg var i normal drift med jævn udfodring fordelt over døgnets 24 timer. Der blev udført paralelforsøg med samme behandling i hvert anlæg. I første runde blev der tilsat 25 gram bentonit per m³ vand og ca. en måned senere blev forsøget gentaget med 25 gram moler per m³ vand. Vandprøver til analyse af BQ værdier blev udtaget ved udløb af biofilter som for begge anlæg er af typen ’beluftet fixed bed’6. Der blev udtaget prøver til analyse umiddelbart før lertilsætning samt efter 1, 3, 6, 10 og 22 timer.

5.6.4.2 RESULTATER OG DISKUSION

5.6.4.2.1 EFFEKTF TID

Resultaterne er grafisk illustreret i bilag 05. Efter 3 timer kunne der måles et reducerede BQ værdier for begge anlæg og begge behandlinger. Den største reduktion i bakterieniveau kunne måles efter 6 timer, hvorefter niveauet forblyve på samme lave niveau eller var svagt stigende mod målingernes afslutning efter 22 timer. De målte BQ værdier stemte godt overens med det visuelle indtryk af vandets klarhed. Efter 3 timer var det tydeligt, at ca. halvdelen af det tilsatte ler ikke længere var med i flowet, og efter 6 timer var

---

4 Hvor de små fisk vænnes fra levende foder til tørfoder
5 Fiskene er vænnet til tørfoder og vokser videre i denne del af anlægget
6 Filtermaterialet er fikseret men gennemblæses med luft
Vandet klaret næsten helt op. Ved målingerne efter 10 og 22 timer var vandet synligt mere klart end før til-sætning af ler, dog tydeligt ved anvendelse af bentonit.

5.6.4.2.2 EFFEKTF AF LERTYPE
Effekten var tilsyneladende ens for begge lertyper og eftersom de 2 lertyper blev anvendt med ca. 1 måneds mellemrum er der ikke basis for at drage konklusioner om forskelle i effekten. Der kan dog spores en svag tendens til at BQ værdierne i forbindelse med bentonitbehandlingerne er svagt stigende efter 22 timer, mens det ved behandlingerne med moler er mere usikkert om BQ værdierne overhovedet har nået deres minimum. Dette kan skyldes at bentoniten generelt er nemmere at få fjernet fra vandet, det ”kli-strer” tilsyneladende mere end moler, men nogen klar konklusion tillader datamaterialet ikke.

5.6.4.2.3 FORSKELLE MELLEM ANLÆG
Som det fremgår af resultaterne i bilag 05 er bakterieniveauet højere i ongrowinganlægget end i weaninganlægget. Det kan skyldes flere forhold. For det første er der stor forskel på anlæggene i absolut størrelse. Weaninganlægget har et totalt vandvolumen på ca. 80 m³ og en stående biomasse på ca. 800 kg ved forsøget, mens ongrowinganlægget har et volumen på 360 m³ og en stående biomasse på ca. 8 tons. De tilhørende vandbehandlingsanlæg er naturligvis også forskelligt dimensioneret, men indeholder de samme komponenter. Dog er mikrosigten på 40 µ i weaninganlægget, mens den er på 60 µ i ongrowinganlægget. Endvidere har weaninganlægget risleg filter til afgasning, mens den foregår med diffusere i ongrowinganlægget. Begge dele kan have betydning for mængden af organiske partikler i anlægget, men forholdet er ikke nærmere undersøgt.

5.6.5 FORSØG MED YERSINIA RUCKERI OG AEROMONAS SALMONICIDA – KU-LIFE
Martin Raida fra KU-Life udførte i forbindelse med nærværende projekt en screening af lerbehandlingseffekt på bakterier i kultur med henholdsvis Yersinia ruckeri (forårsager rødmundssyg i bl.a. ørreder) og Aeromonas salmonicida (forårsager furunkulose i fisk). Forsøget blev udført ved at vand indeholdende de ovennævnte bakterier blev behandlet med henholdsvis moler og bentonit i 4 forskellige koncentrationer svarende til 0, 20, 50 og 100 gram ler pr. m³ vand. Prøverne blev omrystet og henstillet til bundfældning. Efter henholdsvis 30 min, 2 timer og 3 timer blev der udtager prøver der blev foretaget prøver der blev foretaget kraftigt og dernæst podet på agarplader og derefter dyrket indtil der kunne konstateres bakteriekolonier på agarpladerne, hvorefter disse blev talt.

Forsøget adskilte sig fra forsøgene udført hos AquaPri Innovation ved at forsøgene på KU-Life;

- var artsspecifikke i forhold til 2 bestemte bakterietyper
- analyserne blev udført ved podning på agarplader og tælling af kolonier
- der blev anvendt demineraliseret vand uden andet organisk stof end de tilsatte bakterier


5.6.5.1 KONKLUSION PÅ FORSØG UDFØRT AF KU-LIFE
Der kunne ikke erkendes nogen entydig effekt af lerbehandlingen. Selvom forsøget blev omhyggelig udført, kan det ikke udelukkes, at den høje foryndingsgrad, der blev anvendt for at gøre det muligt at tælle kolonier, har bidraget til en usikkerhed, der kan sløre eventuelle effekter.
Med den viden, der er kommet undervijs gennem projektet, burde bundfældningstiden formentlig have været minimum 6 timer for bentonit og op til 20 timer for moler for at sikre tilstrækkelig sedimentering. Alternativt kunne prøverne være centrifugeret.

5.6.6 FORSØG MED AEROMONAS SALMONICIDA – ORBICON
Da den kvantitative effekt af ler på specifikke bakterie"arter”, i form af flokkulering og efterfølgende hurtig udsynkning ikke er særligt godt undersøgt, blev der gennemført flokkuleringstests (JAR-tests) med en kultur af den grammegative bakterie Aeromonas salmonicida som forårsager sygdommen furunkulose hos fisk i fersk- og saltvand. Bakteriekulturen blev venligt stillet til rådighed fra Veterinærinstituttet, Århus af Ellen Lorentzen. I forbindelse med laboratorieeksperimenterne med bakterien Aeromonas salmonicida blev der anvendt kvantitativ epifluorescens mikroskopi ved anvendelse af fluorokromet Acidin Orange og bakterierne blev fixeret med formalin, slutkonc. 0,5 %, (Hobbie 1977), (Andersen 1986). Ved anvendelse af den kvantitative epifluorescens mikroskopi filteres de fixerede og farvede bakterier ned på et sortfarvet polykarbonat med en porestørrelse på 0,2 µm. Såvel frie bakterier som bakterier som afhænger af lerpartiklerne og som derved findes i klumper opkoncentreres på filteret. Det viste sig ved forforsøgene at den klumpede fordeling af bakterierne samt deres placering i/på lerpartiklerne udgjorde et problem ved kvantificeringen. Dels fordi den klumpvise fordeling i sig selv gør det vanskeligt at gennemføre en tælling, dels fordi antallet af bakterier i klumper og på lerpartikler var vanskeligt at gennemføre da bakterierne lå i “flere lag”. Det blev derfor besluttet at forbehandle de fixerede og farvede bakterieprøver med ultralyd for at frigøre de enkelte bakterier så de kunne blive fordelt mere jævnt/tilfældigt på filteret, en teknik som blandt andet anvendes ved kvantificering af kolonidannede blågrønalger/cyanobakterier. Ultralydsbehandlingen fungerede efter hensigten og efterfølgende blev alle bakterieprøver ultralydsbehandlet før tælling. Bakteriekulturen blev venligt stillet til rådighed fra Veterinærinstituttet, Århus af Ellen Lorentzen. Eksperimentet omfattede to forskellige lertyper, henholdsvis moler og bentonit. Da behandling med begge lertyper gav en markant reduktion i bakteriekoncentrationen i løbet af de første timer af forsøget i pilotforsøget blev det besluttet kun at arbejde videre med bentonit. I forbindelse med forsøg med anvendelse af ler i fiskeopdræt anvendes der forskellige koncentrationer af ler med svingende succes, og der er ikke lavet systematiske forsøg med effekten af forskellige lerkoncentrationer i forhold til den ønskede effekt. For at få afklaret om og i hvor høj grad bakteriernes flokkulering med ler var afhængig af lerkoncentrationen blev det derfor besluttet at eksperimentet skulle omfatte tre forskellige lerkoncentrationer 10, 20 og 50 g/m$^3$ (og 100 g/m$^3$ ved et forforsøg) ved forsøgene. Forventningen, baseret på erfaringer fra fiskeopdræt og akvariebranchen var at effekten ville stige med stigende lerkoncentration og at en markant fjernelse af bakterier ville ske ved en lerkoncentration på > 10 g/m$^3$. Ved forsøget blev det besluttet at prøve at anvende en høj koncentration af ler på 100 g/m$^3$, både for at sikre at der var en markant effekt på bakteriekoncentrationen i forsøget og for at teste tællemetoden i forbindelse med tilsætning af ler. I naturlige systemer som søer og hav findes bakterier oftes 10$^9$ - 10$^10$ celler per liter, Andersen & Sørensen 1986, mens bakteriekoncentrationerne i renseanlæg og fiskeopdræt kan være en faktor 10-100 højere. For at undersøge om fjernelsen af bakterier ved flokkulering af ler var afhængig af lerkoncentrationen blev det derfor besluttet, at eksperimentet skulle omfatte tre forskellige lerkoncentrationer 10, 20 og 50 g/m$^3$ (og 100 g/m$^3$ ved et forforsøg) ved forsøgene. Forventningen, baseret på erfaringer fra fiskeopdræt og akvariebranchen var at effekten ville stige med stigende lerkoncentration og at en markant fjernelse af bakterier ville ske ved en lerkoncentration på > 10 g/m$^3$. Ved forforsøget blev det besluttet at prøve at anvende en høj koncentration af ler på 100 g/m$^3$, både for at sikre at der var en markant effekt på bakteriekoncentrationen i forsøget og for at teste tællemetoden i forbindelse med tilsætning af ler. I naturlige systemer som søer og hav findes bakterier oftes 10$^9$ - 10$^10$ celler per liter, Andersen & Sørensen 1986, mens bakteriekoncentrationerne i renseanlæg og fiskeopdræt kan være en faktor 10-100 højere. For at undersøge om fjernelsen af bakterier ved flokkulering af ler var afhængig af lerkoncentrationen blev det derfor udført forsøg med startkoncentrationer af Aeromonas salmonicida på henholdsvis 10$^9$ og 10$^10$ celler per liter samt pilot forsøg med 10$^{11}$ celler per liter. Den høje koncentration i pilotforsøget blev valgt for at sikre en markant reduktion i koncentrationen ved leberhåndtering og for at teste om tællemetoden kunne håndtere bakteriekoncentrationer over hele koncentrationsintervallene fra 10$^9$-10$^{11}$ celler per l. Da bakteriernes flokkulering med ler for-
ventes at være afhængig af turbulens niveauet blev der lavet forsøg med forskellig grad af omrystning af ler og bakterier.

Alle forsøg blev gennemført ved 5°C, for at reducere bakteriernes vækst i løbet af forsøgene og i ferskvand (salinitet = 0 ‰). Forsøgene kørte over 3 timer, med prøvetagning til T= 0,5, 1. og 2. time, dog med et kontrolforsøg med en lerkoncentration på 100 g/m³ som kørte over 65 timer for at se effekten af sedimentationen/udsynkningen også af de bakterier som ikke blev "fanget" af ler.

5.6.6.1 RESULTATER OG DISKUSION


Af Figur 25 kan man erkende at der, ved tilsætning af ler, er to forskellige reduktionsrater; en hurtig, som skyldes udsynkning af floks af ler + bakterier, og en langsom bagvedliggende som skyldes udsynkning af frie bakterier (se kontrolforsøget i Figur 26).

**Figur 25** Udviklingen i koncentrationen af *Aeromonas salmonicida* ved tilsætning af henholdsvis moler og bentonit.

**Figur 26** Udviklingen i koncentrationen i kontrolforsøget, hvor det markante initiale fald i bakteriekoncentrationen udebliver mens slutkoncentrationen efter 65 timer er på samme niveau som i forsøget med ler.
Effekt af lertype og koncentration af ler og bakterier samt forskellig grad af rystning blev også undersøgt. Forsøgene viste at reduktionen af bakterier indenfor de første timer var afhængig af lerkoncentrationen og stort set uafhængig af bakteriekoncentrationen. Ved en koncentration på 10 g/m³ var der således ingen effekt af ler efter 3 timer, se Figur 28.

I forsøg med anvendelse af bentonit i koncentrationer på 20, 50 g/m³ (og 100 g/m³ af begge lertyper), i eksperimenter med forskellige bakteriekoncentrationer og større eller mindre grad af omrystning, blev der registreret markante reduktioner (20-80 %) i koncentrationerne i løbet af forsøgenes 3 timer, hvilket ses på Figur 29 (Se øvrige resultater i Bilag 08 ).

I nogle af forsøgene blev det registreret, at koncentrationen af bakterier faldt i starten, hvorefter den begyndte at stige fra 2. til 3. time. Det initiale fald kan med stor sandsynlighed tilskrives udsynkning af bakterier – mens stigningen i koncentrationen efter 3 timer tyder på vækst af bakterier i forsøget.

Ved at anvende resultaterne efter 1 eller 2 timer ville effekten af lerbehandling i de fleste tilfælde være mere markant end efter 3 timer. Den beregnede reduktion af bakterier i forbindelse med ler behandlingen på 20-60 % efter 3 timer skal således ses som et konservativt estimat.

![Bentonit - R1 - Reduktion efter 3 timer](image1)

![Bentonit - R2 - Reduktion efter 3 timer](image2)

Figur 27 Opsamling på resultaterne af forsøg med forskellige koncentrationer af Bentonit, g/m³, angivet på x-aksen og reduktion i forhold til kontrollen efter 3 timer i %, angivet på y-aksen. Figuren til venstre viser resultaterne ved ”rystning” 1 gang (R1) mens figuren til højre viser resultaterne ved ”rystning ” 2 gang (R2).
Figur 28. Udviklingen i koncentrationen af bakterier i forsøget, med bentonit i en koncentration på 10g/m³, en start koncentration på $10^{10}$ bakterier per liter og omrystning to gange ved start af forsøget. Der ses en markant reduktion i løbet af de første timer af forsøget. Bentonit – K står for kontrol uden ler.

Figur 29. Udviklingen i koncentrationen af bakterier i forsøget, med bentonit i en koncentration på 20g/m³, en start koncentration på $10^{10}$ bakterier per liter og omrystning en gang ved start af forsøget. Der ses en markant reduktion i løbet af den første time af forsøget og en forskel mellem kontrol og bentonit efter 3 timer på 60%. Bentonit - K er kontrol uden lerbehandling.

Et tilsvarende forsøg, men udført ved kvantifikation af bakterierne ved udtrygning af bakterier på agarplader ved KU se afsnit 5.6.5, viste ikke nogen klar tendens til reduktion i koncentrationen af *Aeromonas salmonicida* ved ler behandling. Dette kan dog skyldes at den anvendte kvantificeringsmetode (agartype) ikke var i stand til at detektere størrelsesordenen af ændringene ved behandling med ler.
5.6.6.2 KONKLUSION PÅ FORSØG UDFØRT AF ORBICON

Forsøget viser at behandling med ler, både bentonit og moler, effektivt og hurtigt kan reducere koncentrationen af bakterien Aeromonas salmonicida.

De kvalitative observationer af at lerbehandling fjerner bakterier og urenheder fra vandet i de recirkulerede opdrætsanlæg underbygges således af resultaterne af forsøgene med renkulturer af den sygdomsfremkaldende bakterie Aeromonas salmonicida i koncentrationer fra $10^6$-$10^{12}$ celler per liter. Ved anvendelse af lav lerkoncentration, 10 g/m³, var der ingen entydig effekt af lerbehandlingen efter 3 timer. Ved anvendelse af lerkoncentrationer på 20-100 g/m³ blev der registreret fjernelse af bakterier med en effektivitet på 20-80% efter 3 timer. På grund af vækst i kulturen i løbet af forsøget vil den tilsvarende effektivitet til at fjerne bakterier være væsentligt højere hvis beregningen blev foretaget på resultaterne efter 1-2 timer og der blev også registreret reductorer i bakteriekoncentrationerne ved anvendelse af den lave lerkoncentration på 10 g/m³.

Det bør undersøges om flokkuleringen af bakterier med ler kan optimeres f.eks. ved;

- valg af lertype eller blandinger af ler
- gentagen tilsætning af ler
- tilsætning af forskellige salte, som kan levere anioner, som kan være med til at forøge lers evne til at flokkulere og dermed dets effektivitet til at fange og fastholde bakterier i floks
- tilsætning af polymerer som kan stabilisere lerflops så lerflops+bakterier f.eks. kan hentes effektivt ud vha. mikrosigte.

5.7 SAMLET KONKLUSION FOR UNDERSORGELSER RELATERET TIL BAKTERIENIVEAUE

Kvalitative observationer på bakterier og detritus med bakterier i prøver fra fiskeopdræt viste at mængderne af bakterier og urenheder/detritus med bakterier tilsyneladende reduceres markant ved lerbehandling af vandet. Ved observation i mikroskopetsynes det lerbehandlede vand således renere end det ubehandlede vand – men det var ikke muligt at kvantificere effekterne umiddelbart ved anvendelse af rutinemetoder.

Behandling af opdrætsvandet kan altså reducere mængden af bakterier i vandet, men det sker primært indirekte, ved at leret forbedrer stoffjernelsen i vandet og dermed både reducerer mængden af partikler med bakterier på, men også en reducering af vækstgrundlaget for ny bakterievækst.

Lerbehandling kan altså forbedre stoffjernelsen, men det kræver at der findes et effektivt system til partikelfjernelse. Fjernes partikler og ler ikke fra systemet viste delforsøg 1 og 2 at tilsætning af ler resulterer i øget bakterievækst, hvilket måske også kan udnyttes konstruktivt i andre sammenhænge.

Resultaterne fra bilag 01 viser også tydeligt, at den mest effektive måde at reducere bakterieniveauet i opdrætsvandet er, at fjerne så meget partikulært stof som muligt. Det er primært på partiklerne bakterierne findes fordi de udgør deres næringsmedie. Den største reduktion i vækstpotentialet for bakterier sker hen over mikrosigten.
5.8 FORSØG MED LER TIL FJERNELSE AF ALGER


Lers evne til at fjerne alger er blevet undersøgt på renkulturer af forskellige arter i laboratorieforsøg. Forsøg med blandt andet den toksiske furealge Karenia brevis viser at lerbehandlingen er effektiv til at fjerne en markant fraktion af algerne i løbet af den første dag. Forsøg med brevetoksin, som er det toksin som produceres af Karenia brevis har vist at ler også kan fjerne en markant fraktion af selve toksinet.

Lerbehandling kan således virke både ved at fjerne algen, som skader fisk, samt ved at fjerne de toksiner, som algerne producere, og som sandsynligvis er hovedårsagen til skader på fisk.

Figur 30 Udspredning af ler ved opdræt af fisk i kystvande i Korea i forbindelse med en opblomstring af den skadelige furealge Cochlodinium.
Figur 31 Principskitse som viser hvordan udspredning af ler "fanger" algerne i vandet og synker ud til sedimentet.


Figur 33 Fjernelse af algetoksin, i dette tilfælde brevetoksin produceret af furealgen Karenia brevis ved tilsætning af ler (Pierce, et al. 2004)
I forbindelse med dette projekt er der analyseret algeprøver fra recirkulerede fiskeopdræt samt fra opblomstringer af planktoniske mikroalger fra søer og kystnære områder.


I forbindelse med analyse af prøver fra fiskeopdræt, som er domineret af få arter i høj koncentration, er analysen relativt nem og hurtig at gennemføre. Imidlertid registreres “problemer” f.eks. i form af forøget fiskedødelighed ofte i situationer hvor det mikrobiologiske samfund består af en skøn blanding af en hel række forskellige organismer inkl. forskellige typer af bakterier, amøber, heterotrofe flagellater og ciliater, som alle kan være repræsenterede med en række arter, som kan være meget svære at bestemme rutinemæssigt.

En del af de organismer/arter der registreres er kendt for at kunne skade fisk – men en sammenhæng mellem skadeniveau og organismernes koncentration er oftest ikke kendt/ etableret. For langt de fleste “arter” vedkommende er den tilgængelige viden om skadevirkninger og ”dose respons” sammenhængen ikke etableret overhovedet.

Det er således en stor udfordring at udarbejde analysemetoder стратегier som sømler fornuftigt op på det mikrobiologiske samfund i forhold til at udrede skader på fisk og ikke mindst på at gennemføre meningsfulde risikovurderinger. En af vejene frem i denne sammenhæng er at etablere rutinemæssig overvågning af de mikrobiologiske samfund så ”uskadelige” samfund/koncentrationer af specifikke arter kan identificeres. På denne baggrund kan afvigelsler fra disse samfund med skadelige effekter identificeres – og der vil være en god mulighed for også at få afklaret hvilke miljøforhold der promoverer etablering af uskadelige samfund versus skadelige.

### 5.8.1 LERBEHANDLING: EFFEKTER PÅ ALGER

#### 5.8.1.1 CASE 1 – EJSING SEAFARM, SANDART OPDRÆT

I forbindelse med start af sandartkulturer på Ejsing Seafarm blev der registreret forøget fiskedødelighed. Dyrlægens undersøgelse af fiskene og vandkvaliteten kunne ikke påvise nogen årsag til den forøgede dødelighed. Det blev derfor antaget at dødeligheden skyldes ”alger”, så der blev udtaget algeprøver dag 1 med problemer og igen 3 dage senere fra kar med fisk samt fra indtag af ferskvand og indtag af fjordvand. Ud over de 4 prøver som var konserverede blev der også udtaget ”levende” prøver som ikke var konserverede. Alle prøver blev sendt til analyse hos Orbicon A/S, hvor prøverne blev analyseret af biolog Per Andersen.

Der blev registreret følgende koncentrationer i prøverne fra kar med fisk:

<table>
<thead>
<tr>
<th>Algearten</th>
<th>Dag 1</th>
<th>Dag 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnodinium galatheanum</td>
<td>1,5 millioner/liter</td>
<td>2,3 millioner/liter</td>
</tr>
<tr>
<td>Ochromonas sp.</td>
<td>1,8 millioner/liter</td>
<td>2,9 millioner/liter</td>
</tr>
</tbody>
</table>

Tabel 7 Udviklingen af algekoncentration i Ejsing Seafarm

I øvrigt blev der registreret forskellige bakterie-aedende ciliater og bakterier samt diverse zooflagellater. I prøverne fra henholdsvis ferskvandsindtaget og fjordvandindtaget blev der ikke registreret alger.

Arten *Ochromonas* sp. er ikke tidligere blevet sat i forbindelse med fiskedød og må forventes at være uden betydning for den registrerede fiskedød.

Der foreligger desværre ikke nogen erfaringskoncentrationer for *G. galatheanum* med hensyn til dens skadevirkning på fisk, men det blev formodet, at der som i forbindelse med f.eks. arten *Karenia mikimotoi* kan være forhøjet risiko for skader på fisk ved koncentrationer > 1 mill celler/liter.

Furealgen *G. galatheanum* er meget tolerant overfor temperatur og specielt saltholdighed. Den kan således gro ved saltholdigheder fra almindeligt havvand (25-30 ‰) til lavsaliint brakvand/ferskvand med få ‰ saltholdighed. Det må dog forventes at algernes vækst vil aftage markant når saltholdigheden nærmer sig eller er = 0 ‰. Desuden er *G. galatheanum* mixotrof, dvs. at den kan ernære sig ved en kombination af fotosyntese, som kræver lys, og ved at æde andre mikroorganismer (Nielsen 1993)

På grund af algens store tolerance overfor salinitet, temperatur og lysforhold, kan den være meget vanskelig at få ud af opdrætssystemet. Det ville under alle omstændigheder være en god ide at minimere den tilgængelige lysmængde for algen. Da arten som nævnt tidligere er mixotrof kan den blive “hængende” længe i systemet selv om der ikke er noget lys til stede.

Det blev endvidere foreslået at karrene med fisk og alger skylles ud med ferskvand med så høj en fortyndingshastighed som muligt. Dette kan være med til at vaske de giftige alger ud – og på kort sigt i det mindste reducere algekoncentrationen i karrene. Dette kan dog være forbundet med problemer i recirkulerede anlæg, hvor det ofte ikke er muligt at skifte store mængder vand.

En reduktion af mængden af uorganiske næringsstoffer vil være ønskeligt – da basis for opbygning af de høje koncentrationer af giftige alger så reduceres. Biofilteret bør køre optimalt så mest muligt kvælstof løbende fjernes for ikke at give grobund for algerne og de bakterier de også lever af.


I første omgang blev der således ikke identificeret en god og effektiv behandling som kunne sikre at *G. galatheanum* kunne fjernes fra opdrættet. Det blev overvejet at tømme hele opdrætssystemet og starte forfra, men også det blev opgivet da der var stor risiko for at algen blot ville dukke op igen. Imidlertid opstod ideen at prøve at anvende ler til kontrol af algen idet det er almindeligt kendt at ler effektivt kan reducere mængden af alger i kystvande og søer og rutinemæssigt bliver anvendt blandt andet i Korea ved bekæmpelse af furealge-opblomstringer i kystvandene. Biolog Per Andersen var således i 2001 med til at skrive en håndbog om bekæmpelse af skadelige alger i kystvande hvor anvendelsen af ler blev anbefalet. Et litteraturstudie på lers an-
vendelse i forhold til opdræt af fisk inkl. akvariefisk, foretaget af Lars Bach som er fiskemester på Ejsing Seafarm, viste at ler anvendes i forbindelse med opdræt af f.eks. Koy-karper, som ved behandling med ler i koncentrationer på ca. 20-50 g ler/m³ får et flottere udseende – klarere farver og flot glans. Da AquaPri Innovation i Egtved havde ler stående blev det besluttet, at prøve at behandle sandartopdrættet på Ejsing Seafarm med en kombination af Bentonit og Moler.

Behandlingen med ler viste sig at være meget effektiv overfor algeproblem. Allerede samme dag blev der registreret en markant forbedring i fiskenes tilstand.

Analyse af algeprøver udtaget henholdsvis før og efter lerbehandlingen viste en markant klaring af vandet generelt, som skyldes fjernelse af både alger bakterier og detritus samt en markant reduktion i forekomsten af algen *G. galatheanum*.

Der blev registreret følgende koncentrationer:

<table>
<thead>
<tr>
<th></th>
<th>Før tilsætning af ler</th>
<th>7 timer efter lertilsætning</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Gymnodinium galatheanum</em></td>
<td>1,1 millioner/liter</td>
<td>0,4 millioner/liter</td>
</tr>
</tbody>
</table>

Tabel 8 Reduktion i antallet af *Gymnodinium galatheanum* efter lertilsætning

Lertilsætningen medførte således en markant momentan reduktion på -60% i forekomsten af *G. galatheanum*.

Det var tydeligt at ler behandlingen havde en markant effekt på koncentrationen af *G. galatheanum*, mens det er uvist om ler behandlingen også har haft en effekt på tilstedeværelsen af toksiner i vandet. Resultatet af ler behandlingen var under alle omstændigheder meget anspørgende og det blev besluttet, at forsøge at arbejde videre med anvendelsen af ler for at etablere en bedre dokumentation af effekten af ler på vandkvaliteten i opdræt og for at undersøge om behandlingen med ler kunne forbedres/optimeres.

5.8.1.2 CASE 2 – SANDART OPDRÆT, AQUAPI INNOVATION


<table>
<thead>
<tr>
<th>Celler/ml</th>
<th>Efter</th>
<th>Før</th>
<th>% ændring</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Flags”</td>
<td>307</td>
<td>377</td>
<td>-19</td>
</tr>
<tr>
<td>“Bakt”</td>
<td>78.000</td>
<td>109.200</td>
<td>-29</td>
</tr>
<tr>
<td>&quot;Bakterietråde&quot;</td>
<td>1769</td>
<td>428</td>
<td>313</td>
</tr>
</tbody>
</table>

Tabel 9 Reduktion af antallet flagellater og bakterier, men en stigning i antal trådformede bakterier, efter lerbehandling.
5.8.1.3 CASE 3 – PSEUODACHATTONELLA – OPBLOMSTRING

I forbindelse med den markante opblomstring af den fiskedræbende flagellat *Pseudochattonella* i det tidlige forår 2011 blev der indsamlet materiale fra Marselisborg Havn som blev behandlet med Bentonit.

Saliniteten var 19 ‰ og temperaturen var 5°C. Der blev anvendt lerkoncentrationer på henholdsvis 20 og 50 g Bentonit/m³. Forsøgene kørte over 3 timer. Startkoncentrationen af *Pseudochattonella* var på max. 10 mill. celler per liter.

Behandlingen med ler medførte at koncentrationerne af *Pseudochattonella* blev reduceret i forhold til kontrolforsøget, Figur 36. Der blev registreret en markant stigende effekt ved anvendelse af stigende lerkoncentration. Efter 3 timer var reduktionen i koncentrationen af Pseudochattonella forøget med ca. 25 % i forhold til kontrolen, Figur 35.

**Figur 34** Koncentrationen af bakterietråde før og efter behandling med ler ved forsøg udført på AquaPri Innovation.

**Figur 35** Den tidsmæssige udvikling i koncentrationen af den skadelige flagellat Pseudochattonella ved behandling med Bentonit i to forskellige koncentrationer samt kontrol
Figur 36 Effekten på reduktionen i koncentrationen af den skadelige flagellat Pseudochattonella af de to koncentrationer af bentonit i forhold til kontrolforsøget.

Forsøget viste at behandlingen med Bentonit har en effekt på den marine skadelige flagellat Pseudochattonella ved en salinitet på 19 ‰. Ved behandling med Bentonit i en concentration på 50 g Bentonit/m³ ses en forøget reduktion i forhold til kontrollen på 26 %. Ved behandling med 20 g Bentonit/m³ ses kun en forøget reduktion på 4 % i forhold til kontrolforsøget.

Resultatet lover således godt for fremtidige forsøg med bekæmpelse/kontrol af Pseudochattonella som siden 1998 har været den mest markante problem-alge for havbrugerne. Anvendelse af ler ved kontrol/bekæmpelse af algeopblomstringer i havbrug kræver sandsynligvis at netburene med fisk skærmes af med flydespærringer for at reducere tilførslen af alger med de lokale havstrømme. I forbindelse med Pseudochattonella er det en fordel at algeopblomstringerne forekommer i forårsperioden hvor vandet er koldt så ilttforbruget i havbruget er lavt så afskærmning af havbruget ikke vil føre til en hurtig reduktion i ilttindholdet hos fiskene.

Forsøget viste i øvrigt at Pseudochattonella er meget følsomme overfor manipulationer i forbindelse med forsøg. Dette ses både ved at koncentrationen af celler i kontrolbehandling falder markant i løbet af forsøget og også ved at Pseudochattonella i høj grad skifter celletype fra den aflange type som dominerede i de naturlige prøver til dominans af den kugleformede type. Forsøget antyder at der sker en momentan reduktion i koncentrationen af Pseudochattonella fra ca. 9 mill celler per l til 7 mill. celler per l ved tilsætningen af ler, d.v.s. til tid = 0. Hvis denne effekt regnes med i reduktionsberegningen forøges lerbehandlingens effekt til 40-50 % efter 3 timer ved anvendelse af en lerconcentration på 50 g/m³.

5.8.1.4 CASE 4 – LANDBASERET OPDRÆT AF REGNBUEØRRED – HIRTSCHALS

I forbindelse med start af det landbaserede recirkulerede model-saltvandsopdræt af regnbueørred i Hirtshals i juni blev der registreret en markant opblomstring af alger. Algeopblomstringen blev behandlet med både Bentonit og Moler. Saltholdigheden i opdrættet var 21 ‰ og temperaturen 15,5 °C.

I forhold til kontrollen viste både behandlingen med Bentonit og Moler markante reducerende effekter på algesamfundet. Koncentrationerne af alger blev således reduceret med henholdsvis 87 % og 97 % ved behandling med de to lertyper.
Algesamfundet var domineret af trådformede blågrønalger og kiselalger. Begge grupper blev reduceret med henholdsvis 100 % og 82-99 % ved behandling med ler.

For kiselalgernes vedkommende bør det bemærkes, at også arter som er mistænkt for at kunne skade fisk som f.eks. *Pseudonitzschia* og *Skeletonema* begge blev reduceret med 70-100 % ved behandlingen, med koncentrationer i kontrollen på henholdsvis 11.000 og 1.1 mill. celler/liter.

Som for Pseudoachattonella forsøgets vedkommende er det vigtigt at være opmærksom på, at lerbehandlingen er meget effektiv også i saltvandssystemer. Endvidere er det bemærkelsesværdigt at effekten af lerbehandlingen på anlægget i Hirtshals var så markant. Det kan måske hænge sammen med at der foregik tilføjelse af saltsyre samtidig for at sænke pH i anlægget, men det er ikke undersøgt nærmere.

Resultaterne viser således at behandling med ler i saltvandsbaserede recirkulerede anlæg kan have en stor effekt på algeopblomstringer, og at det sandsynligvis kan være en god ide at handle både forebyggende, for at forhindre opblomstringer samt at iværksætte lerbehandling ved skadelige opblomstringer for at forbedre miljøforholdene for fiskene.

### 5.8.1.5 CASE 5 – VANDBLOMST AF BLÅGRØNALGER

En blågrønalgeopblomstring domineret af kolonidannende arter fra slægterne *Aphanizomenon* og *Microcystis* blev indsamlet fra Brassø. I forbindelse med opblomstringen blev der registeret et ca. 10 mm tykt “flydelag” af vandblomst. Både ved tilsætning af moler og bentonit i koncentrationer på 20-50 g/m³ blev flydelaget markant reduceret; ca. 50 % i løbet af få timer. Forsøget viste at flydelaget blev reduceret fordi en del af algerne flokkulerede med ler og sedimenterede.

### 5.9 SAMLET KONKLUSION FOR UNDERSØGELSER RELATERET TIL ALGER OG LER

Ved anvendelse af lerkoncentrationer på 20-100 g/m³ blev der registeret fjernelse af alger med en effektivitet på 50-100 % indenfor de første 1-2 timer afhængig af, hvilken type alger det drejer sig om. Der ses god reducerende effekt både i ferskvand og saltvand.

Anvendelse af ler kan have en næsten momentan positiv effekt på fisk som angribes af alger. Effekten skyldes sandsynligvis primært at koncentrationen af alger reduceres, men også effekten af ler ved fjernelse af giftige stoffer og forbedret sårheling kan måske være af betydning.

Rutinemæssig anvendelse af ler som forebyggende metode til at holde en god miljøkvalitet i opdræt og undgå skader på fisk som skyldes opblomstringer af mikroorganismer og bakterier er blevet anvendt med gode resultater.

Forebyggende behandling og bekæmpelse af massive opblomstringer af blågrønalger i søer i forhold til bevandskvalitet og drikkevandsreservoirer ved anvendelse af ler ser ud til at have et stort potentiale.

Det bør undersøges om flokkuleringen af alger med ler kan optimeres f.eks. ved;

- anvendelse af forskellige lertyper eller blandinger af lertyper
- gentagen tilsætning af ler
- tilsætning forskellige salte som kan levere anioner som kan være med til at forøge lers evne til at flokkulere og dermed dets effektivitet til at fange og fastholde algerne i floks
- tilsætning af polymerer som kan stabilisere floks så floks+alger f.eks. kan hentes effektivt ud vha. mikrosigt
5.9.1 PARTIKELFJERNELSE VED FLOKULERING OG FILTRERING

I projektperioden blev det undersøgt om flokkulering var en brugbar metode til hurtigere at få fjernet aggregaterne af ler og organisk stof ud af det interne vandkredsløb. I den forbindelse stillede Ken E. Larsen fra www.Combikem.dk sig til rådighed og gæstede AquaPri Innovation, hvor han lavede en række screeninger med forskellige flokuleringsmidler for at vurdere mulighederne.

Figur 37 Det kan lade sig gøre at få ler og partikulært materiale til flokulerer ud.


Ideen er hermed også givet videre til andre, som måtte finde det interessant.

Tilsætning af flokulkanter virker således ikke til at være vejen frem i den interne vandrensning i opdrætsanlæg, men kan være en udmærket metode til opkoncentrering af partikulært stof i slutrensningen (afledningsvand fra produktionen). Til intern vandrensning er metoden for risikofyldt og økonomisk uholdbar.
5.10 PARASITTER

5.10.1 FISKEDRÆBER
Der er i projektet kun lavet begrænsede undersøgelser i relation til en enkelt parasit: *Ichthyophthirius Multi- filis*, populært kaldet ”Fiskedræber”. Fiskedræber er en parasit, som hvert år giver anledning til mange problemer i danske dambrug. Den bekæmpes traditionelt med formalin, salt og/eller forskellige pereddikesyreprodukter. Desværre er det kun muligt at bekæmpe den på et bestemt stadio i dens livscyklus, nemlig når den ”sværmer” og er i det såkaldte theront-stadie (kalder også tomit-stadie), hvilket nødvendiggør adskillige behandlinger over en 2-3 ugers periode.

Kurt Buchmann fra KU-Life lavede et mindre forsøg med tilsætning af ler til vand, hvori der var tilsat nogle af ovennævnte theronter. Det viste sig at lerbehandlingen, i et vist omfang, kunne få theronterne til at ”udfælde” dvs. at de, som registreret for alger, bundfældede sammen med leret og ikke længere svævede frit i vandet. Theronterne døde ikke af behandlingen, men blev ”fanget” på bunden af beholderen sammen med ler, så perspektivet i opdagelse var interessant, eftersom det åbner mulighed for at reducere mængden af theronter i opdrætsanlæg. Hvis lerbehandling kan føre til en bundfældning af theronter kan dette stadie af parasitten sandsynligvis bringes ud af opdrætssystemet gennem den eksisterende partikelfjernelse. På Rakkeby Dambrug på Mors opstod der et udbrud af fiskedræber på 5 grams ørredyngel, hvor der et stykke henne i det traditionelle behandlingsforløb (med pereddikesyreproduktet ”PerAqua®”) blev suppleret med tilsætning af moler (25 g/m³ hver 4. time). I løbet af 5-6 timer gik fiskene i de lerbehandlede kummer væsentlig bedre end fiskene i de kummer, hvor der ikke var blevet tilsat ler. Resultatet var så markant at Fiskemesteren dernæst tilsatte det til alle kummer (den traditionelle behandling blev fortsat sideløbende). Dødeligheden aftog kraftigt i løbet af det følgende døgn og fiskene fik deres ædelyst genoprettet. Observationerne var interessante, om end det ikke kan udelukkes, at lerbehandlingen blev iværksat på netop det tidspunkt, hvor effekten af den traditionelle behandling for alvor begyndte at slå igennem. Desværre havde Fiskemesteren ikke ’nerver’ til at gennemføre behandlingen på en måde, så det blev et kontrolleret forsøg, ved ikke at behandle et antal bassiner med det ler eller PerAqua. Efter aftale med dyrlægerne Thomas Clausen og Niels Henrik Henriksen vil den mulige effekt af lerbehandling mod fiskedræber blive fulgt op i praksisnære forsøg, når velegnede udbrud/anlæg dukker op.

Såfremt der kan dokumenteres en effekt af lerbehandling mod fiskedræber, forventes Bentonit at være mere effektiv end moler, hvilket kan tilskrives den mere ”klistrende” og bundfældende effekt bentonit har i forhold til moler.

5.10.2 ØVRIGE PARASITTER
Der er ikke lavet forsøg med ler og andre parasitter end fiskedræber i dette projekt, men det vil være relevant at undersøge forholdet nærmere under kontrollerede betingelser. Specielt Costia er relevant at få undersøgt, eftersom der i øjeblikket ikke findes gode alternative behandlinger til den traditionelle behandling med formalin. Anvendelse af formalin ønskes begrænset til et absolut minimum.
6.1.1 EJSING SEA FARM

Figur 38 Ejsing Seafarm er et fuldt recirkuleret indendørs anlæg

Anlægget er et indendørs recirkuleret anlæg, som er forpagtet af AquaPri til sandartzproduktion. Interessen for vandbehandling med ler og dermed nærværende projekt udsprang i 2010 fra en problemstilling med giftige alger i opdrætsvandet på Ejsing Seafarm. Det lykkes at nedsætte koncentrationen af de giftige alger til et uskadeligt niveau gennem behandling med moler og dermed redde bestanden af fisk i anlægget. Indtil videre er det den eneste kendte og dokumenterede metode til løsning af forekomst af giftige alger i opdrætsanlæg, se afsnit 5.8.1.1 i denne rapport.

Fiskemester Lars Bach har i hele projektperioden anvendt vandbehandling med ler konsekvent 2 gange ugentligt; 1 behandling med moler og 1 behandling med bentonit. Lars Bach har observeret flere positive effekter som konsekvens deraf.

- For det første har der ikke været algeproblemer i perioden.
- For det andet har det ikke været nødvendigt at anvende andre former for behandling i anlægget overhovedet!

Det hører virkelig til sjældenhederne at kunne drive et recirkuleret anlæg i mange måneder uden at skulle behandle vandet med jævne mellemrum med f.eks. formalin, pereddikesyreprodukter eller brintoverilte. Dyrlægen, som jævnligt tilsætter anlægget kan konstatere at fiskene har “fine gæller”, hvor netop tilslimning af gæller ofte er et problem i recirkulerede opdrætsanlæg.
6.1.2 ABILDVAD DAMBRUG

Dambruget, som er ejet af AquaPri A/S er et betonanlæg opbygget efter redekamsprincippet. Som vandbehandling er der mikrosigte, ’moving bed’ biofilter samt både rislefilter og intern beluftning i de enkelte kar. Anlægget har gennem en årrække været plaget af tilbageværende bakteriel gælleinfektion hos fiskene. Siden dette projekts start har fiskemesteren 2 gange ugentligt behandlet med 20 g bentonit/m³ vand i anlægget. Det har resulteret i at det, helt usædvanligt, ikke har været nødvendigt at handle mod bakteriel gælleinfektion i perioden. I sensommeren 2011 løb anlægget tør for bentonit, hvorefter der gik mindre end 14 dage, inden der atter kunne konstateres udbrud af bakteriel gællesyge. Vandbehandlingen med bentonit blev genoptaget og der har ikke været problemer siden.

Et stykke tid efter at man var begyndt at anvende bentonit i vandbehandlingen, kunne det konstateres, at algebelægninger på karrene var væk. Oftest er der tale om blågrønne alger (cyanobakterier) der sidder på karrenes vægge i overgangszonen mellem vand og luft. Det var disse belægninger der havde sluppet underlaget og var forsvundet.

Figur 39 Abildvad dambrug
6.1.3 HØGHØJ DAMBRUG


6.1.4 VOLDBJERG DAMBRUG

Dambruget er et raceway-system med mikrosigter og beluftning, men uden biofilter. Ejer og Fiskemester Erik Andersen har i perioder anvendt lerbehandling med såvel bentonit og moler. Erik beretter om markant mere klart vand og øget ædelyst hos fiskene i 1-2 døgn efter en behandling, hvorefter effekten forsvinder. Erik anvender lerbehandling efter behov.

6.1.5 KÆRHEDE DAMBRUG (RACEWAY SYSTEMET)

Fiskemester Finn bruger moler i raceway-systemet på Kærhede Dambruget 2 gange ugentlig. Anlægget er udstyret med mikrosigter og et ‘beluftet fixed bed’ filter af bioblokke. Fiskemesteren synes lerbehandlingen bidrager til at give visuelt renere vand. Endvidere resulterer behandlingerne i mere flydeslam i slamkonzentratoreren, der behandler spulevandet fra mikrosigten. Begge observationer stemmer godt overens med at lerbehandlingerne forbedrer den eksisterende partikelfjernelse i anlæggene.

6.1.6 AQUAPRI INNOVATION

på fiskenes gæller og dræbende for bakterier i vandet. Dette følges typisk op af en lerbehandling, hvorefter problemer plejer at være løst. Teorien bag denne kombinationsbehandling er at pereddikesyren løser det akutte problem på fiskenes gæller og lerbehandlingen bidrager til at fjerne årsagen til problemets opståen. Kombinationsbehandlingen fungerer i langt de fleste tilfælde og de få gange, hvor det ikke er tilstrækkeligt kan en saltbehandling med 8-10‰ salt i vandet løse problemet, men pga. den lave vandudskiftning og udgifterne til salt begrænser saltbehandlinger mest muligt.

Det har vist sig muligt i praksis at drive anlægget uden brug af formalin og kloramin overhovedet. Det er dog værd at bemærke at anlægget er lukket for tilgang fra fisk udefra og at der ikke forefindes patogene parasitter på anlægget. Problemer med fiskevelfærd stammer derfor udelukkende fra mere eller mindre uspecifikke problemer relateret til vandkvaliteten.

6.2 DAMBRUG SOM **IKKE** HAR KONSTATERET NYTTE AF LERBEHANDLING

6.2.1 **RONNUM DAMBRUG**
Dambruget består af betonkummer til yngelproduktion. Vandbehandlingen består af mikrosigte efterfulgt af en plantelagune på ca. 0,5 ha, beluftning og til sidst et mindre biofilter. Anlægget er atypisk fra andre anlæg ved at plantelagunen udgør en del af den interne vandbehandling. Det store overfladeareal i plantelagunen resulterer i massive algeforekomster i sommerhalvåret. Det blev forsøgt om 2 ugentlige behandlinger med moler kunne bidrage til at reducere mængden af alger i vandet, men effekten var ikke overbevisende, og der anvendes ikke længere ler i anlægget.

![Figur 41 Ronnum Dambrug. Vandets grågønne farve skyldes lertilsætning i vand som i forvejen var grønt af alger.](image)

6.2.2 **KÆRHEDE DAMBRUG (RUNDE TANKE)**
På Kærhede Dambrug findes der foruden ovennævnte raceway-system også et anlæg med runde tanke. Vandbehandlingen består i det dette anlæg af mikrosigte og ’moving bed’ biofilter. Fiskemesteren mener ikke lerbehandling i dette anlæg har samme opklarende effekt på vandet som i raceway-systemet, hvilket muligvis kan tilskrives at moving bed filter ikke har samme evne til at fange små partikler (polering) som ’fixed bed filter’ har.

6.2.3 **ØVRIGE DAMBRUG**
Flere end ovennævnte dambrug har forsøgt sig med lerbehandling af vandet, men af forskellige grunde ikke rapporteret resultater tilbage, ikke forsat behandlingen eller været usikre på effekten. Ved projektets afslutning var der forsat interesse fra nye anlæg, som ønskede at prøve om de måtte have effekt deraf.
6.3 **KONKLUSION PÅ AFPRØVNING I PRAKSIS**

De opdrætsanlæg som har haft positive erfaringer med lerbehandling har overordnet set rapporteret om;

- øget fisketrivsel målt på ædelyst/appetit hos fiskene
- mindre behov for anvendelse af hjælpstoffer til bekæmpelse af primært gælleproblemer (tilslimede gæller og bakteriel gælleinfektion).

Hvorfør mener nogle opdrættere de har stor nytte af lerbehandling, mens andre ikke har? Er der tale om placeboeffekt? Næppe! Det er mere sandsynligt at forklaringen skal findes i kombinationen af problemets art og anlæggets udformning.

De kontrollerede forsøg afklarede at;

- lerbehandling ingen effekt havde på en række vandkemiske parametre (pH, alkanitet, ammonium, nitrit og nitrat)
- til gengæld var der en markant reducerende effekt af lerbehandling på de mikrobiologiske parametre (uspecifikt bakterieniveau) og alger.
- for bakteriernes vedkommende var effekten en kombination af reduktion af partikler med bakterier på, og en reduktion af vækstgrundlaget for bakterier - nemlig organisk partikulært materiale.

Netop den ikke patogene mikrobiologi i relation til fiskeopdræt er et emne, der er særdeles sparsomt belyst sammenlignet med f.eks. vandkemi og gasser i vand. Den ikke patogene mikrobiologi kan bedst karakteriseres som en “black box”, hvis indhold vi ikke kender ret meget til, men forholder os til i generelle termer som f.eks.; “for mange bakterier er ikke godt, de kan irritere fiskenes gæller” eller ”vi skal bruge UV behandling for at lægge en overligger over bakterieniveauet”. Mikrobiolog Morten Miller fra firmaet ”Mycometer” er i den forbindelse kommet med et udsagn, der er værd at overveje: ”Måske skal I fokusere på at gøre Jeres opdrætsvand biostabil frem for at symptombehandle på problemer der opstår pga. fluktuationer i vandkvaliteten”.

Lerbehandling kan direkte og indirekte medvirke til at reducere mængden af alger og bakterier i opdrætsvandet ved at ”klistre” sig til partiklerne og gøre dem mere tilgængelig for fjernelse. Det kræver at det enkelte anlægslång vandbehandlingssystem er rimeligt effektiv til at fjerne partikler. Lerbehandling kan kun understøtte/forbedre partikelfjernelsen. Fjernes partiklerne ikke hurtigt/effektivt nok, bidrager ler snarere til et øget partikelpres og dermed øget partikulært overfladeareal, som giver mulighed for forøgelse af den mikrobiologiske aktivitet, hvilket kan være både positivt og negativt.

Med baggrund i ovenstående er det nærliggende at opstille en hypotese om:

- Lerbehandling har en positiv effekt på fiskenes trivsel i de situationer, hvor der er problemer forårsaget af utilstrækkelig fjernelse af organisk partikulært materiale (POM).
- Tilsætning af ler kan understøtte vandbehandlingsanlæggets effektivitet ved at gøre partiklerne ”lidt større” gennem aggregering mellem lerpartikler og POM.
- I de tilfælde, hvor der er massiv ”overbelastning” af POM i anlægget pga. f.eks. meget høj biomasse eller dårlig partikelfjernelse, formår lerbehandling ikke at give nogen synlig effekt.
- For anlæg hvor problemet ikke eksisterer - ses der heller ingen effekt.
- Derfor virker lerbehandling på nogle anlæg og ikke andre (måske?).

Hvis ovenstående hypotese er sand burde der kunne der tænkes en korrelation mellem belastningen af POM i opdrætsanlæg og mængden af ”problemer”. Dette er ikke undersøgt i nærværende projekt, men det
er heller ikke nødvendigvis givet, at det forholder sig lineært. Der findes opdrætsanlæg hvor indholdet af POM er så højt det næsten kan karakteriseres som ”aktivt slam”. I disse anlæg er det det høje indhold af POM nærmest en betingelse for at omsætningen i anlægget kan fungere. Problemet med aktivt slam i fiskeopdrætsanlæg er ikke, at det ikke virker, men det er svært at styre, hvis der kommer ubalance i mikrobiologien.

6.3.1 BEHANDLINGSKONCENTRATIONER OG OVERLEVELSE HOS FISKENE

Det er i projektpérioden ikke lykkes at slå fisk ihjel ved tilsætning af ler til opdrætsvand!

Indledningsvist blev der arbejdet med doseringer på 10 gram/m³ vand, hvilket reducerede sigtbarheden i vandet til 20-30 cm. I kontrollerede forsøg er der lavet forsøg med 5 gentagelser med sandart på 5 og 500 gram med forskellige lerdoseringer fra 0 til 100 gram. Fiskene har således svømmet i koncentrationer på op til 100 gram/ m³ i op til 24 timer uden der kunne registreres dødelighed eller efterfølgende problemer.

For ørreder i ferskvand er der testet koncentrationer af med både moler og bentonit på op til 150 g/ m³ i fuldskala anlæg uden at det gav anledning til dødelighed, men så går der til gengæld et par dage inden man kan se sine fisk igen og det kan ikke umiddelbart anbefales.

For ørreder i saltvand (20 ‰) er der kun afprøvet koncentrationer på 25 g/ m³ og det gav ikke anledning til problemer.

Den øvre grænse for kombination af dosering og varighed er således ikke fundet endnu. Foreløbig anbefales det at anvende en koncentration på 25 gram/ m³, og gerne halv dosis første gang, for at se fiskenes reaktion. Endvidere anbefales det at sikre sig at fiskenes gæller ikke er stærkt tilsimede ved behandling med ler, hvilket kan resultere i at ler klistre sig fast i gællerne. Check derfor fiskenes gæller først og/eller afslim disse med en peredikesyrebehandling.
7 SAMLET KONKLUSION PÅ PROJEKTETS UNDERSØGELSER

7.1 HVAD KAN LER IKKE HJÆLPE MED I FISKEOPDRÆT

Tilsætning af ler til vandet i fiskeopdræt er ikke en mirakelkur, der kan løse alle uspecifikke problemer relateret til dårlig vandkvalitet.

- Lerbehandling med doseringer under 50 g/m³ vand, har ingen direkte effekt på de vandkemiske parametre som pH, alkanitet, ammonium, nitrit og nitrat
- Ler kan ikke forventes at kurere sygdomme/fjerne infektioner hos fisk
- Ler kan ikke forventes at have nogen effekt, hvis vandudskiftningen i anlægget er stor, eller der ikke haves effektivt system til partikelfjernelse integreret i vandbehandlingen. Specielle forhold gør sig dog gældende ved anlæg med aktivt slam.

7.2 HVAD KAN LER BIDRAGE MED I FORHOLD TIL FISKEOPDRÆT

Tilsætning af ler til vandet kan bidrage positivt til;

- Bedre fjernelse af organisk partikulært materiale, såfremt der haves effektivt system til partikelfjernelse.
- Reduktion af uspecifikt bakterieniveau, fordi vækstgrundlaget/madpakken’ for bakterierne reduceres.
- Effektiv kontrol og reduktion af algeopblomstring. Problemet har hidtil ikke været stort i Dk, men der har til gengæld heller ikke været kendte metoder til afhjælpning af det.
- Reducere behovet for kemiske hjælpestoffer på de opdrætsanlæg, som med lerbehandling har succes med at forebygge problemer hos fiskene pga. dårlig vandkvalitet.

7.3 SIDEGEVINSTER

Projektet har givet nogle uventede sidegevinster for fiskeopdrætterne i Danmark. Tilsætning af ler til vandet virker som partikulært kontraststof og kan dermed synliggøre 2 ting for den enkelte opdrætter.

- Visualisering af anlæggets flow, som kan bruges til at afdække om der er uhensigtsmæssige vandhastigheder el. opblændingsforhold i anlægget.
- Visualisering af anlæggets evne til at fjerne partikulært stof, som er fundamentalt afgørende for, hvor godt resten af anlæggets vandbehandling virker.
- Eftersom effekterne af lertilsætning primært kunne dokumenteres at påvirke partikulær stoffjernelse og mikrobiologien i opdrætsvandet, har projektet også været en øjenåbner for betydningen af disse 2 forhold, og det kan forventes at disse emner vil få øget fokus fremadrettet.

Figur 42 De hydrauliske forhold i fiskeopdrætsanlægget bliver ganske synlige når der tilsættes ler!
ANBEFALINGER TIL VIDERE UNDERSØGELSER

Projektets undersøgelser, litteratur og personlige kontakter har inspireret til mange emner, der er værd at kigge nærmere på. I nedenstående afsnit (8.1 til 8.10) er beskrevet en række områder, som forhåbentlig kan inspirere andre til at samle tråden op og bidrage til forståelsen af, hvad lerbehandling kan hjælpe med og modst ligeså vigtig, hvor det ingen effekt har.

8.1 VIDENSKABELIGE DOKUMENTATION AF EFFEKTER.

Undersøgelserne i nævneværende projekt lever langtfra op til kravene for videnskabelig dokumentation. Forsøgsbeskrivelserne er sparsomme, der er ingen eller få gentagelser i forsøgene og dermed ingen statistisk belæg for at afvise, at der er tale om tilfældige resultater. Nærværende resultater kan forhåbentlig inspirere nogle forskere til at gå mere i dybden med delemner og afklare effekterne mere præcist.

8.2 GEOSMIN OG MIB

For geosmin var der en vis indikation af at moler måske havde en reducerende effekt på geosminindholdet i vand. Forholdet er interessant, men kræver langt flere dybdegående undersøgelser inden forholdet er endelig afklaret og forstået. Ved projektets afslutning var der iværksat nye screeninger for at undersøge om emnet kalder på egentlige undersøgelser.

8.3 TESTE FLERE LERTYPER OG MULIGHEDER VED AT BLANDE DEM.


8.4 EFFEKT PÅ PARASITTER, SPEICIELT FISKEDRÆBER

I relation til parasitter er der en foreløbig teoretisk forhåbning om af lerbehandling kan bidrage til at reducere mængden af disse i opdrætsvandet. Mekanismen deri er den samme som for partikelfjernelse; Partikel + ler = større partikel = forbedret mekanisk fjernelse. *Ichthyophilus multifilis* bedre kendt som Fiskedræber samt *Costia ichthyobodo*, er de 2 parasitter, hvor det vil være mest nærliggende nærmere at undersøge lers effekter på.

8.5 BEHANDLINGSKONCENTRATIONER OG FREKVENS

Den optimale koncentration og hvor ofte lerbehandling bør gives i de tilfælde, hvor der er en effekt kan der endnu ikke gives entydige svar på. Som ved mange andre former for behandlinger afhænger det af den konkrete situation og foreløbig kan der kun opfordres til at den enkelte dambruger prøve sig lidt frem.

8.6 PRODUKTUDVIKLING AF LER

Det er muligt gennem fysisk og kemisk behandling at ændre forskellige lertypers egenskaber. De 2 testede lertyper bruges f.eks. begge til fremstilling af kattegrus, hvor den ene lertype resulterer i klumpende kattegrus, mens den anden er ikke klumpende. Modificeret ler anvendes i en lang række sammenhænge og det vil være oplagt at undersøge effekterne af allerede eksisterende modificerede lerprodukter.
8.7 EVNE TIL AT BINDE MEDICINRESTER

Det er kendt fra litteraturen at nogle lertyper er i stand til at binde en række miljøfremmede stoffer. I relation til fiskeopdræt er mulig binding af antibiotikarest re interessant. I tilfælde af bakterielle infektioner kan det være nødvendigt at tilsætte antibiotika til foderet for at helbrede fiskene, hvilket resulterer i nogle restkonzentrationer i fiskenes fækalier der kan frigives til vandet. Antibiotikarest re har en negativ effekt på biofiltrenes rensningskapacitet og er uønskede i vandmiljøet. Hvis nogle lertyper var i stand til at binde antibiotika ville det være stort skridt på vejen til at kunne reducere de uønskede effekter af de nødvendige behandlinger.

8.8 LANGTIDSEFFEKTER PÅ OMSÆTNING I BIOFILTRE

I de tilfælde hvor lerbehandling forbedrer fjernelsen af organisk stof i anlægget, kan det måske give anledning til forbedret nitrifikation i biofiltrerne. I biofiltrere foregår der mange processer samtidigt, men anvendes en stor del af det interne areal til heterotrof omsætning af organisk stof kan det være begrænsende for nitrifikationskapaciteten. Det er en kompleks problemstilling, men relevant at undersøge.

8.9 INDFLYDELSE PÅ FOSFORFÆLDNING I PLANTELAGUNER OG SLAM

Et velkendt problem fra modeldambrug er, at der sker en betydelig næringsstoftilførsel fra slambade til plantelagunerne, som oftest udgør slutrenseningen inden udledning til recipient. Hvis der kan opnås en bedre sedimentering i slambedene ved f.eks. tilsætning af ler til spulevandet fra mikrosigter, vil det måske være muligt at reducere den uønskede udvaskning af næringsstoffer og tilbageholde en større del af disse i slammet.

8.10 EFFEKTIVE METODER TIL AT FJERNE LER OG BUNDNE STOFFER FRA VANDET

Lerbehandling kan bidrage til at gøre uønskede partikler lettere at fjerne. Overordnet findes der 2 metoder til partikelfjernelse; bundfældning og filtrering. Indenfor hver kategori, er der en række varianter. I fiskeopdræt anvendes primært simpel bundfældning, mikrosigter og kontaktfiltrering. Såfremt der ønskes en generelt bedre partikelfiltrering er det i høj grad et dimensioneringsspørgsmål. De eksisterende løsninger er udtryk for en afvejning af viden, antagelser og økonomi. Anlægsinvesteringerne stiger, hvis der ønskes mikrosigter med 40 µ filtrering frem for 60 µ. Der mangler imidlertid dokumentation for de mere langsigtede driftsoøkonomiske konsekvenser af en forbedret rensning. Måske lerbehandling mister sin relevans, hvis den tekniske partikelfjernelse forbedres og har i så fald blot været et skridt på vejen i vores forståelse af recirkulereret fiskeopdræt. Men det kan også tænkes at lerbehandling vil indgå som et supplement til den tekniske partikelfjernelse i fremtiden, fordi det er økonomisk attraktivt at kombinere tingene.
Øget fisketrivsel er for fiskeopdrættere lig med bedre forretning.
Lerbehandling kan i nogle tilfælde bidrage til øget fisketrivsel gennem forbedret vandkvalitet på nogle anlæg.
For alle opdrættere kan det bidrage til øget indsigt i hvordan og hvor godt deres anlæg fungerer.
Anvendelsen er så nem, billig og ufarlig at det bør prøves af alle, så enhver kan gøre sine egne erfaringer med det og lære sit anlæg bedre at kende.
På sigt kan anvendelsen af ler på en meget simpel måde bidrage til en projekteringsmæssig optimering af vandbehandlingssystemerne i recirkulerede anlæg. Det er nærliggende at overveje om der skal satses mere på mekanisk filtrering (fx mikrosigter og kontaktfiltre) og mindre på biologisk omsætning (biofiltration) og UV og ozon. Det vil måske kunne reducere anlægsomkostningerne, give arbejdsbesparelser og mere kontrollerbare vandbehandlingssystemer.
At tilsætning af ler både kan reducere bakteriemængden i vandet, men også øge den kraftigt, hvis det ikke fjernes, kan udnyttes konstruktivt i forbindelse med denitrifikation vha. aktivt slam i recirkulerede opdrætsanlæg. En af grundende til at aktivt slam ikke anbefales til intern stofomsætning i fiskeopdræt er, at flowet er så stort at det ikke er muligt holde slamflokkene til et bestemt område i anlægget. Til intern denitrifikation behøves kun et mindre delflow (< 500 l/kg foder), hvilket øger det overskueligt at tilbageholde slamflokkene i en reaktor. Lertilsætning kan i den sammenhæng bidrage til øget overfladeareal og tungere floks, som nemmere kan tilbageholdes. Det kan bane vej for at reducere omkostningerne til denitrifikation så meget, at det fremover bliver økonomisk bæredygtigt at integrere processen på flere anlæg end tilfældet er i dag. Processen flytter produktionens kvælstofudledninger fra vandmiljøet til luftmiljøet.

FAQ

Dambrugere har en sund skepsis mod at hælde ”nye” stoffer i deres anlæg. Det giver ofte anledning til en bestemt række spørgsmål:

- Er det farligt for fiskene?
- Hvad koster det?
- Hvor kan man få det?
- Tilstopper ler ikke biofiltrere?

Der er derfor udarbejdet en kortfattet vejledning (Bilag 06 Vejledning til forsøg med lertilsætning), som giver svar på disse spørgsmål.
BIBLIOGRAFI


Long, Li-Hui, Yan-Ting Zhang, Xiu-Fang Wang, og Yong-Xiao Cao. »Montmorillonite adsorbs urea and accelerates urea excretion from the intestine.« Applied Clay Science, 2009: 57-62.

Matson, Sean E., og Christopher J. Langdon & Sanford Evans. »Specific pathogen free culture of the Pacific oyster (Crassostrea gigas) in a breeding research program: Effect of water treatment on growth and survival.« Aquaculture, 2006: 475–484.


Pierce, Richard H., Michael S. Henry, Christopher J. Higham, Patricia Blum, Mario R. Sengco, og Donald M. Anderson. »Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation.« Harmful Algae, 2004: 141-148.


Sengco, Mario R., Johannes A. Hagström, og Edna Granéli and Donald M. Anderson. »Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals.« Harmful Algae, 2005: 261-274.


BILAG
"Udløb bassin grøn 7" udviser et uventet forløb ved at falde markant de første 24 timer inden den stiger ekstremt, før til sidst at aftage som de øvrige.

Figur 43 Måling af BQ værdier i Weaninganlægget. Spulevand fra mikrosigte havde BQ-værdier på 550.000 fra start til max på 780.000!!
### Bakteriennevåge som resultat af lær og saltbehandling

<table>
<thead>
<tr>
<th></th>
<th>Kontrol</th>
<th>Moler</th>
<th>Moler</th>
<th>Moler</th>
<th>Moler</th>
<th>Moler</th>
<th>Moler</th>
<th>ejler</th>
<th>ejler</th>
<th>Ben toni t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lerkonc. g/M³</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Salt i o/oo</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>BQ i Supernatant t+6t</td>
<td>3122</td>
<td>3438</td>
<td>2260</td>
<td>2208</td>
<td>1930</td>
<td>2281</td>
<td>2208</td>
<td>2102</td>
<td>4952</td>
<td>4304</td>
<td>3268</td>
<td>3023</td>
<td>2664</td>
<td>2044</td>
<td>1827</td>
</tr>
<tr>
<td>BQ i oprystet prøve t+6t</td>
<td>5602</td>
<td>6991</td>
<td>5285</td>
<td>5232</td>
<td>5355</td>
<td>8803</td>
<td>9403</td>
<td>9329</td>
<td>6522</td>
<td>3436</td>
<td>3354</td>
<td>1612</td>
<td>1677</td>
<td>1531</td>
<td>1521</td>
</tr>
</tbody>
</table>

**Figur 44 Bakteriennevåge (BQ-værdier) målt i supernatant og i oprystede prøver i relation til salttilsætning (%) og lærbehandling (gram/m³)**
Figur 45 Bakterieniveau som følge af lerbehandling med og uden opkvældning
Bakterieniveau som funktion af lerbehandling og tid

Figur 46 BQ som funktion af lerbehandling og tid
Bakterieniveau i anlæg ved lerbehandling

Lerdosering på 25 g/M3 vand
Prøver udtaget i udløb af biofilter

BQ værdier

Weaning d. 19/4 Bentonit
Weaning d. 11/5 Moler
Ongrowing d. 19/4 Bentonit
Ongrowing d. 11/5 Moler

Figur 47 Bakterieniveau i anlæg ved lerbehandling
VEJLEDNING TIL FORSØG MED LERTILSÆTNING

Senest opdateret 27/7 2011 af MV

Hvorfor overhovedet tilsætte ler til vandet i forbindelse med fiskeopdræt?
Fordi det tilsyneladende har en gavnlig effekt på fiskenes trivsel i visse tilfælde. Derfor er vi nogle stykker, som er gået i gang med at finde ud hvorfor.

Vi ved allerede nu at nogle typer ler er ret effektive til at fjerne alger i vand, og vi har også set, at det kan reducere mængden af bakterier i vandet. Principippet ser ud til at være aggregering hvilket vil sige, at alger og bakterier klistrer sig fast på leret og derefter fjernes ved bundfældning og/el. i mikrosigterne. En del ler vil også sætte sig i biofiltrerne, men det ser ikke ud til at have nogen negativ effekt, måske tværtimod.

Ambitionerne er at teste nogle forskellige lertypers effekt på div. vandkvalitetsparametre, parasitter, bakte- rier, alger og geosmin

Er det farligt?
Tilsyneladende ikke, men vi kan ikke afvise, at der kan være omstændigheder, hvor det kan give problemer. Det kan tænkes, at leret ville sætte sig i kraftigt tilslimede gæller og give yderligere komplikationer. Foreløbig er det ikke lykkedes os, at slå nogle fisk ihjel med det. Men husk det er på eget ansvar at teste det.

Hvad koster det?
Ca 3 kr/kg for de typer vi i øjeblikket tester. Det vil sige, at en behandling af 1000 M3 vand koster ca. 75 kr. ved en dosering på 25 gram per M3 vand.

Hvor kan man få det?
Ved direkte henvendelse til nedenstående 2 producenter:

<table>
<thead>
<tr>
<th></th>
<th>Moler</th>
<th>Bentonit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Produktnavn</strong></td>
<td>Entomol 1000G</td>
<td>DantoCon Pure C</td>
</tr>
<tr>
<td><strong>Ca. pris pr kg + fragt og</strong></td>
<td>2,5-3 kr/kg ved køb af 1.000 kg</td>
<td>2,5-3 kr/kg ved køb af 1.000 kg</td>
</tr>
<tr>
<td><strong>Fås i 25 kg sække</strong></td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td><strong>Opblanding</strong></td>
<td>Nem</td>
<td>Lidt svær</td>
</tr>
<tr>
<td><strong>Leverandør</strong></td>
<td>DAMOLIN A/S</td>
<td>Dantonit A/S</td>
</tr>
<tr>
<td></td>
<td>Kønsborgvej 9</td>
<td>Energivej 30</td>
</tr>
<tr>
<td></td>
<td>DK-7884 Fur</td>
<td>DK-5250 Odense S</td>
</tr>
<tr>
<td>Tlf.: 97 59 32 22</td>
<td>Tlf.: 65 97 32 63</td>
<td></td>
</tr>
<tr>
<td>Kontaktperson: Bo Schønfeld</td>
<td>Kontaktperson: Johny Hansen</td>
<td></td>
</tr>
</tbody>
</table>

Doseringer
Vejledende dosering er 25 gram ler pr M3 vand. Men prøv fx med 10 gram første gang og se hvorledes fiskenes reagerer.

Opblanding og tilsætning
Bland den ønskede mængde ler op med lidt vand og tilsæt det ved dammens/karrets indløb (el. efter biofiltreret) over ca. 5-10 minutter. Moler er meget nemt at blande op, mens bentonit kan være lidt mere genstridigt. Brug fx en 200 liters formalintromle med en diffusorslange i bunden og sæt den til noget luft. Som
alternativ til luftpølæsning kan en billig dykpumpe uden afgangsslanges også lave en effektiv opblanding i en formalintromle el. palletank.

**Behandlingsfrekvens**


**Yderligere oplysninger kan fås hos**

Martin Vestergaard, Aquapri, mob. 2097 2044
Thomas Clausen, Dyrlæge, mob. 4040 4741
Ler som naturlig vandbehandling

Jesper Heldbo, Aquacircle
Martin Vestergaard, Aquapri
Per Andersen, Orbicon

DanAqua Oktober 2011
Ålborg Messecenter

Hvorfor ler i vandet og hvordan virker det?

• Overfladeareal
  – Mulighed for adsorbtion

• Rummelig struktur
  – Mulighed for absorbtion

• Elektrisk ladning (neutral el. Negativ)
  – Mulighed for kationombytning

• Partikeltiltrækning
  – Mulighed for “flokkulering”
Ler som klæbestof

- Adsorption: Molekyler bindes til et materiale
- Absorption: Molekyler bindes i et materiale

![Diagram of adsorption and absorption](image)

Adsorption

Negativt ladede bakterier kan bindes til negativt ladede lerpartikler vha kation bindinger

- Clay particle negatively charged
- Bacterium negatively charged
- Divalent cation
- Attachment of bacterium through cation bridging

MTJ 29/6.02
Absorbtion

• Absorption: Molekyler bindes i et materiale
• Kvælning - fx vand i bentonit

Absorption og adsorbtion

• Bakterier adsorberet i lerpartikel der har “absorberet” vand
**Ionbytning**

- CEC - Cation Exchange Capacity
- Fx til fjernelse af tungmetaller

**Hvordan fungerer det?**

1. Der tilsættes ler
2. Der sker en ”klæbning” af div. Partikler til leret (adsorbion)
3. Partikler kan fx være: alger, bakterier, parasitter, proteiner, div. Suspenderede organiske og uorganiske partikler,
4. Partiklerne ”klæber” til større partikler el. sammen til større partikler.
5. Noget af ”skidtet” fjernes i mikrosigterne (el. slamkegler)
6. Resten ”klæber” fast i biofiltrene (fixed bed mest effektive)
Hvad kan ler i opdrætsvand?

• Reducere mængden af en del alger
• Fjerne positivt ladede proteiner (kendt fra vinfremstilling)
• Fjerne små partikler og svæv i vandet
• Direkte og indirekte fjerne bakterier
• Bidrage til øget trivsel og ædelyst hos fiskene
• Reducere Nikkel, Phospor, Kobber og Zink
• **Måske**
  – Reducere geosmin
  – Reducere medicinrester
  – Fiskedræber og andre parasitter

Hvad kan ler *ikke* i opdrætsvand?

• Løse alle dine problemer
  Endnu!
• Vandkemi uden målbare effekter
  – Ammonium & ammoniak
  – Nitrit & Nitrat
• Gennemløbsanlæg contra recirkulerede anlæg
Hvordan i praksis?

- Dosis: 25 g / M3 vand (10-100 gram)
- Opblandes med vand
- Tilsættes over 10-20 minutter
- FORSIGTIG! Ved tilslimede gæller
- Overdosering?

Hvor fås det og hvad koster det?

<table>
<thead>
<tr>
<th></th>
<th>Moler</th>
<th>Bentonit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Produktnavn</strong></td>
<td>Entomol 100 G</td>
<td>DantoCon Pure C</td>
</tr>
<tr>
<td><strong>Ca. pris pr kg + fragt og moms</strong></td>
<td>2,5-3 kr/kg ved køb af 1.000 kg</td>
<td>2,5-3 kr/kg ved køb af 1.000 kg</td>
</tr>
<tr>
<td><strong>Fås i 25 kg sække</strong></td>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td><strong>Opblanding</strong></td>
<td>Nem</td>
<td>Lidt svær</td>
</tr>
<tr>
<td><strong>Leverandør</strong></td>
<td>DAMOLIN A/S</td>
<td>Dantonit A/S</td>
</tr>
<tr>
<td></td>
<td>Kønsborgvej 9</td>
<td>Energivej 30</td>
</tr>
<tr>
<td></td>
<td>DK-7884 Fur</td>
<td>DK-5250 Odense S</td>
</tr>
<tr>
<td></td>
<td>Tlf.: 97 59 32 22</td>
<td>Tlf.: 65 97 32 63</td>
</tr>
<tr>
<td></td>
<td>Kontaktperson: Bo Schønenfeld</td>
<td>Kontaktperson: Johny Hansen</td>
</tr>
<tr>
<td><strong>Overfladeareal CEC værdi</strong></td>
<td>Ca 50 M2/gram Ca. 52 me/100 g</td>
<td>(200-750) M2/gram (80-150) me/100 g</td>
</tr>
</tbody>
</table>
Sidegevinster

- Se dit vand og dit flow
- Sig goddag til din vandbehandling
- Været en øjenåbner for mikrobiologien i fiskeopdrætsvand

Hvad sker der videre?

- Projektrapport i November
- Yderligere geosmin screening (DA)
- Yderligere fiskedræber screening
- Håber nogen tager tråden op
  - Yderligere præcise undersøgelser
  - Teste flere lertyper og størrelsesfordelinger
  - Modificere lerets egenskaber
- Aquapri forsætter med anvendelse og afprøvninger
Afsluttende bemærkninger

Ler er til behandling af vandet og formentlig ikke fiskene

Det er billigt og har en nydelig miljøprofil

Vi har meget at lære endnu!
Forsøg I og II med LER og Aeromonas

A. KONKLUSIONER:
LER VIRKER – overfor Aeromonas-bakterierne. Vi ser markante reduktioner på 20-80 % gns ca. 50 % i løbet af den/de første timer

10 g/m³ virker tilsyneladende ikke altid! ?
Ved anvendelse af 20-50 g/m³ ses en reduktion i bakteriekoncentrationen!
Der er en svag tendens til at 50 g/m³ reducerer bedre end 20 g/m³ – og 100 g/m³ virker også fint.
Ved anvendelse af 20-50 g/m³ registreres en reduktion på 20-80 %.
Den største del af reduktionen registreres i løbet af 1-2 timer – herefter overlejres effekten tilsyneladende af vækst i kulturen.
Kraftigere rystning R2 ser ikke ud til at have nogen markant effekt.

Fejlkilder: væksten i bakterierne kan have påvirket resultaterne
Vi mangler en kontrol måling på kontrollen til tiden 0!!

B. FORSØG I

LER - behandling af Aeromonas salmonicidae

Bakterier fra Ellen Lorentzen, Vet Inst. Århus.

Bakteriokulturen er opslømmel i fysiologisk saltvand 0,9 % ± 9 o/o

Bakteriokulturen er holdt på is og efterfølgende i kølelåb ved 5°C

Bakteriokulturen inspiceres ved mikroskopisk
corpusculer

Hvor store er cellerne
corpusculer (ca. 1 μm)
corpusculer varde afleggelse

Er de frie eller i klumper
frie og mindre klumper

Er de bevægelige eller ubevægelige
ubevægelige

Hvor hurtigt synker de når de er levende
så langsomt

Hvor hurtigt synker de når de er konserverede med LUGOL
så langsomt

Figur 48 Aeromonas salmonicida er en Gram-negativ bakterie, tilhørende slægten Aeromonas, som forårsager sygdommen furunkulose hos marine og saltvandsfisk.
Sekvientiel sedimentation af bakterier ved tilsætning af ler

Sekvens 1: Flokkulering med ler og sedimentation

Sekvens 2: Sedimentation af frie bakterier/klumper etc.

Resultater:

Flokkulering m. moler/bentonit (inkl. kontrol)

• Start koncentration af bakterier ca. 2 x 10^11 /L
• Tilsatler ca. 100 g/m²
• Temp = 5°C, Salinitet = 0 o/oo, pH = 7,5, i mørke
• Ryst [eksponering] i 15 sekunder [!! (kort!!)]
• Reduktion i forhold til kontrol efter 3 timer
  Moler = 17%, Bentonit = 63%

NB: I kontrolløsningen reduceres koncentrationen med en markant lavere rate end i løsningerne.
Reduktionen i kontrolløsningen skyldes bakteriernes udsynkning i klumper eller enkelceller
(sekvens 2 udførelse)

Flokkulering m. moler/bentonit

Kontrol, dvs uden moler/bentonit
C. FORSØG II
Detaljerede forsøg i februar med Bentonit og flere koncentrationer af bakterier samt Ryst 1 og Ryst 2

Flokkulering m. bentonit (50 g/m3) - ryst 1 (inkl. kontrol) $10^{10}$

Flokkulering m. bentonit (20 g/m3) - ryst 1 (inkl. kontrol) $10^{10}$

Flokkulering m. bentonit (10 g/m3) - ryst 1 (inkl. kontrol) $10^{10}$
DantoCon Pure C

Produktbeskrivelse
DantoCon Pure er en calcium bentonit, udviklet til anvendelse i vertikal- og horisontalboringer, slurry Walls, forsegling af betonkonstruktioner samt tætning i forbindelse med tunnelbyggeri.
I forskellige geologiske forekomster.
DantoCon Pure N er karakteriseret ved at være letopblandelig i ferskvand.
Produktet er fremstillet af dansk calcium bentonit hvor de kemisk-fysiske undersøgelser, som er foretaget på produktserien DantoCon, har påvist, at der efter det nuværende vidensniveau, fra et miljøteknisk synspunkt, ikke er risiko for forurening.

Specifikation
DantoCon Pure N er et ready to mix bentonitpulver, som ved tilsætning af forskellige præstationsfremmelende additive kan tilpasses mange typer af vandstandsøde opgaver, foruden det også vil være velbegnet til ukomplicerede HDD borer.

I nedenstående tabel er angivet typiske måleværdier for standart produktet Danto Con N forskellige produkter.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unit</th>
<th>DantoCon Pure N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen analysis 150 µm</td>
<td>%</td>
<td>&gt;98</td>
</tr>
<tr>
<td>Moisture</td>
<td>%</td>
<td>7-12</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>7,5</td>
</tr>
<tr>
<td>Marsh viskositet</td>
<td>sec</td>
<td>35</td>
</tr>
<tr>
<td>Filtercake</td>
<td>mm</td>
<td>0,5-0,9</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>-</td>
<td>&gt;500</td>
</tr>
<tr>
<td>Colour</td>
<td>-</td>
<td>Gray</td>
</tr>
<tr>
<td>Fluid loss (30’et 100 psi)</td>
<td>mi</td>
<td>15-17</td>
</tr>
<tr>
<td>Physical state</td>
<td>-</td>
<td>Powder</td>
</tr>
<tr>
<td>Plasticity limit PI</td>
<td>%</td>
<td>80-100</td>
</tr>
</tbody>
</table>

Yderligere råd og vejledning fås ved at kontakte Dantonit.

Emballage
Bulk, 1.000 kg og 500 kg bigbag, 25 kg sække
# Teknisk Datablad

**ENTOMOL EN 100G**

**Udskrivningsdato:** 2011-10-11  
**Version:** 1.1 2011-01-01

## Produktbeskrivelse

### Tørret og formalet moler (diatoméjord)

#### Typisk kemisk sammensætning (efter tørring ved 110°C)

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Min.</th>
<th>Max.</th>
<th>Gennemsnit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O + Na₂O</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Glødetab (1025°C)**
- Specifik vægt: 2,3 g/cm³
- pH (10% vanlig opslømning): 4,5

## Specifikationer

<table>
<thead>
<tr>
<th>Specifikationer</th>
<th>Min.</th>
<th>Max.</th>
<th>Gennemsnit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumvægt</td>
<td>310 g/l</td>
<td>276 g/l</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>6 %</td>
<td>3,5 %</td>
<td></td>
</tr>
<tr>
<td>Absorptionsevne, vand (Modificeret BASF-metode)</td>
<td>147 %</td>
<td>176 %</td>
<td></td>
</tr>
<tr>
<td>Absorptionsevne, Olie (Modificeret BASF-metode)</td>
<td>160 %</td>
<td>188 %</td>
<td></td>
</tr>
</tbody>
</table>

## Sigteanalyse

<table>
<thead>
<tr>
<th>Sigteanalyse</th>
<th>Min.</th>
<th>Max.</th>
<th>Gennemsnit</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; 45 µm</td>
<td>18,5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 63 µm</td>
<td>12,2 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 90 µm</td>
<td>6,5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 250 µm</td>
<td>0,4 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


---

Damolin A/S · Kænsborgvej 9 · DK-7884 Fur  
Tel: +45 97 59 32 22 · Fax: +45 97 59 30 33 · E-mail: damolin@damolin.com  
Damolin A/S is DSIEN ISO 9001:2008 / DSIEN ISO 14001 certified  
www.damolin.com