
Ozonation and UV irradiation*/an introduction
and examples of current applications

Steven T. Summerfelt *

Director of Aquaculture Systems Research, The Conservation Fund’s Freshwater Institute, P.O. Box 1889,

Shepherdstown, WV 25443, USA

Received 24 July 2002; accepted 8 November 2002

Abstract

This paper was written to introduce the 2001 AES Issues Forum’s ‘Ozone and UV

Treatment ’ session by providing an overview of ozone and ultraviolet (UV) irradiation

technologies as well as several examples of current ozone and UV irradiation applications in

aquaculture.

# 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ultraviolet irradiation; Ozonation; Aquaculture; Oxidation; Disinfection

1. Introduction

Ozone is a powerful oxidizing agent that has seen wide use in aquaculture

applications for achieving both disinfection and water quality improvements

(Rosenthal, 1981; Owsley, 1991; Cryer, 1992; Wedemeyer, 1996; Summerfelt and

Hochheimer, 1997). Ozone is added to aquaculture system waters to inactive fish

pathogens, oxidize organic wastes (including color) and nitrite, or supplement the

effectiveness of other water treatment units. Ozone has some advantages because it

has a rapid reaction rate, produces few harmful reaction by-products in freshwater,

and oxygen is produced as a reaction end-product.

Ultraviolet (UV) irradiation is also being widely applied within aquaculture

systems. However, the primary objective of UV irradiation is disinfection. In
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contrast to ozonation, UV irradiation is not generally considered to be a process that

is applied to supplement the effectiveness of other water treatment units.

2. Ozonation

Ozone application within aquaculture systems requires ozone generation, ozone
transfer into solution, contact time for ozone to react, and possibly ozone

destruction to ensure that no ozone residual makes it into the culture tanks

(Summerfelt and Hochheimer, 1997). These requirements are discussed, along with

certain key issue regarding the application of ozone within recirculating aquaculture

systems.

2.1. Ozone generation

Ozone is typically generated within an enriched oxygen feed gas using an electrical

corona discharge. Enriched oxygen feed gases are often used because ozone

production is 2�/3 times more energy efficient when an oxygen feed gas is used

instead of air (Masschelein, 1998), and because purified oxygen feed gas supplies are

already used to maximize carrying capacity within many intensive aquaculture

systems. Corona discharge generation using purified oxygen feed gas requires about

10 kW h of electricity to produce 1.0 kg of ozone (Masschelein, 1998). Also,

generating ozone in oxygen feed gas can produce a 10�/15% (by weight) concentra-
tion of ozone, which nearly doubles the concentration of ozone that can be generated

using air as the feed gas. The relatively high concentrations of ozone can be

generated to reduce the overall mass of oxygen required to supply ozone. Yet, it is

less energetically efficient to produce ozone concentrations of 10�/15% (by weight)

than to produce ozone concentrations of 4�/6% (Carlins and Clark, 1982). Taking all

of this into account, ozone production can be optimized according to the demands of

the aquaculture system and economic considerations of feed gas cost and energy

usage.

2.2. Ozone transfer

Ozone generated within either an air or oxygen feed gas must be transferred into

water for microbiological inactivation or other oxidative purpose. The ozone gas can

be transferred into the water using any of the typical oxygen transfer devices

(Summerfelt and Hochheimer, 1997). Effective transfer of ozone into water is

important because the cost of producing ozone is not insignificant, especially if the
ozone is carried within a purified oxygen feed gas that is either purchased or

produced on site.

The rate of ozone transfer and the subsequent rate of ozone decomposition

depends upon the contact system efficiency and the reaction rates of ozone with

constituents in the water. The ozone reaction rate depends on the water temperature

and on the concentration and type of constituents contained in the water. Rapid
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reaction with oxidizable inorganic and organic material will maintain a low apparent

equilibrium concentration of ozone within the liquid film and increase the rate of

ozone transfer compared to water’s without oxidizable inorganic and organic

material. The driving force for ozone transfer is maximized when the ozone absorbed

is rapidly consumed by reaction with constituents within water. In fact, when ozone

reacts very fast, ozone decomposes at the gas surface and no molecular ozone is

transferred into the water (Bablon et al., 1991).

Ozone transfer units that have a continuous liquid-phase (i.e., units that disperse

gas bubbles within a liquid)*/such as Speece cones (Fig. 1), U-tubes (Fig. 2),

aspirators, bubble diffusers, and enclosed mechanical surface or subsurface mixers*/

provide both ozone transfer and some reaction time. Ozone transfer units that have a

continuous gas-phase (i.e., units that disperse liquid drops and films within a gas)*/

Fig. 1. An ozone/oxygen feed gas is injected into water within three Speece cones (plumbed in parallel for

redundancy and variable flow requirements). The system shown is used to disinfect 400�/2400 l/min of

surface water at the US Fish and Wildlife Service’s Northeast Fishery Center in Lamar, PA (Summerfelt et

al., in press).
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such as spray columns, packed columns, and multi-stage low head oxygenators (Fig.

3)*/provide efficient transfer but very little time for reaction (Summerfelt and

Hochheimer, 1997). Continuous gas-phase transfer units are best suited for use in

situations where the maximum amount of ozone needs to be transferred in the

shortest time. Continuous liquid-phase transfer units are usually selected for

situations where reaction is rate limiting and an ozone residual must be maintained

for a specific length of time (Bellamy et al., 1991).

Most ozone contactors rely on continuous liquid-phase units that bubble ozone

into the liquid (Bellamy et al., 1991). High column bubble diffusers are frequently

used for aquacultural applications and can achieve more than 85% ozone transfer to

the liquid phase (Liltved, 2001). These units are particularly well suited to situations

where reaction is rate limiting and an ozone residual must be maintained for a

specific length of time, such as during disinfection. Speece cones (Fig. 1), U-tubes,

and low head oxygenators (Fig. 2) are also being used to efficiently and rapidly

Fig. 2. A copper pipe is used to supply the pure oxygen feed gas to a LHO unit, while a stainless steel pipe

is used to carry the ozonated feed gas. The LHO is used to oxygenate/ozonate 4800 l/min of water in a

recirculating system at the Conservation Fund Freshwater Institute (Shepherdstown, WV).
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transfer ozone/oxygen feed gas within recirculating aquaculture systems (Summerfelt

et al., 2000), where the primary goals of the gas transfer units are to:

. supply supersaturated levels of dissolved oxygen that will increase the culture tank

carrying capacity, and

. transfer ozone (carried within the purified oxygen feed gas) to oxidize nitrite and

organic matter and supplement the effectiveness of other treatment processes.

Ozone transfer within continuous gas-phase units is not as common as within

continuous liquid-phase units (Bellamy et al., 1991). When ozone transfer has been

reported within continuous gas-phase units, the applications are mostly within

packed columns and more recently within low head oxygenators that are used in

recirculating system applications (Fig. 3). However, the relatively high transfer

efficiency and relatively small vessel requirement of continuous gas-phase transfer

units do make these units attractive when compared to the transfer efficiency and

foot print of high column bubble diffuser systems.

If ozone transfer is not 100% efficient, then the off-gas discharged from the

transfer unit will contain some ozone. Because ozone is toxic, the ozone in these off-

gas flows must be treated to destroy the remaining ozone before the gas is

discharged.

Fig. 3. The 4800 l/min recirculating system at the Freshwater Institute was designed for ozone addition

within the purified oxygen feed gas supplied to the LHO unit. Drawing courtesy of Marine Biotech, Inc.

(Beverly, MA).
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2.3. Ozone disinfection and maintaining an ozone residual

Ozone oxidation can kill microorganisms, but disinfecting the water requires

maintaining a certain dissolved ozone concentration for a given contact time. Thus,

disinfecting efficiency depends on the product of the ozone residual concentration

multiplied by its contact time. An ozone contact vessel should provide the time

necessary for the ozone residual to react with and inactivate the target microorgan-

ism(s). Disinfecting water can require maintaining a residual ozone concentration of

0.1�/2.0 mg/l in a plug-flow type contact vessel for periods of 1�/30 min, depending

upon the target microorganism. Wedemeyer (1996) and Liltved (2001), and

Summerfelt et al. (in press) provide reviews on ozone dosing requirements for

various fish pathogens. These reviews indicate that many pathogenic organism can

be inactivated by ozone c �/t dosages of 0.5�/5.0 min mg/l. Unfortunately, certain

spore forming organism are especially hard to inactivate with ozone.

Ozone has seen frequent use for pre-treating surface waters supplied to fish farms

(Liltved, 2001) and state or federal fish hatcheries (Roselund, 1975; Owsley, 1991;

Cryer, 1992; Summerfelt et al., in press) in situations where water born pathogens are

a significant concern or problem. On occasion, ozone has also been used to disinfect

fish hatcheries discharges in an attempt to prevent the potential for the release of fish

pathogens to the receiving watershed (Liltved, 2001).

In order to achieve the desired disinfecting c �/t (i.e., the product of the ozone

residual concentration at the end of the contact vessel multiplied by the hydraulic

retention time of the contact tank), an ozone dose sufficiently high to account for the

initial ozone demand of the water must be provided. In natural waters and in waters

found within recirculating systems, additional ozone will be lost in reactions with

organics and other compounds at rates that depend upon the water temperature.

According to ozone demand tests on a high quality trout stream water being ozone

disinfected at the US Fish and Wildlife Service Northeast Fishery Center (Lamar,

PA), an ozone concentration of 2�/4 mg/l must be transferred to maintain a 0.2 mg/l

ozone residual concentration after 10 min (Summerfelt et al., in press). Cryer (1992)

reported similar ozone demand results in tests on surface water supplies that were

being disinfected at US Fish and Wildlife Service salmonid hatcheries in North

America. All of the surface water supplies examined in these studies exhibit relatively

high water quality with low concentrations of oxidizable organic material, iron, and

manganese (Cryer, 1992; Summerfelt et al., in press), yet the ambient ozone demand

reduces the half-life of ozone to less than a few minutes. In comparison, the half-life

of ozone dissolved in pure water at 20 8C is 165 min (Rice et al., 1981). The ozone

demand of water within recirculating aquaculture systems, which contains much

higher levels of organic material and nitrite, creates an even shorter ozone half-life

(e.g., B/15 s), which makes maintaining an ozone residual difficult (Bullock et al.,

1997). For this reason, achieving large microorganism reductions in recirculating

systems requires much greater ozone dosages than are required for simply

controlling water quality within these systems (Bullock et al., 1997) and also much

higher ozone dosages than are typically required for disinfecting single-pass inflows.
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When sufficient ozone has been transferred to create a disinfecting ozone residual

concentration at the end of the contact chamber, then that residual will need to be

removed before the water reaches aquatic organisms in the culture tanks. Residual

ozone can be lethal to fish at concentrations as low as 0.01 mg/l, but the actual

concentration depends upon species and life stage (Section 2.4). To abate this

potential problem, dissolved ozone can be removed by providing extended contact

times, aeration and degassing, intense UV light doses, or reaction with hydrogen

peroxide (Section 2.5).

The surface water filtration and ozonation system at the US Fish and Wildlife

Service’s Northeast Fishery Center (Lamar) is an example of the ozone contacting

and removal sequence that can be employed to provide contact time for disinfection

and also protect the fish culture system from ozone residual (Summerfelt et al., in

press). This system (Fig. 4) first uses a pair of 60-mm microscreen drum filters to

remove fine particulates that might shield pathogens from dissolved ozone. The

system then uses Speece cones (Fig. 1) to transfer ozone into the water and

subsequently provides contact time for the ozone within a two-reactor sequence that

is followed by a ventilated cascade column (Fig. 4). The first vessel in the sequence

provides the ozone contact time (e.g., 10 min HRT) required to achieve disinfection

and the second larger vessel requires the contact time (e.g., 20 min HRT) for

dissipation of much of the ozone residual. A dissolved ozone probe is used to

monitor the ozone concentration exiting the first contact vessel and this information

is used in a PID control loop to adjust the ozone generator output for maintaining a

constant 0.2 mg/l of ozone residual concentration following the first ozone contact

Fig. 4. Ozone Treatment system for disinfecting 400�/2400 l/min of surface water at the US Fish and

Wildlife Service’s Northeast Fishery Center in Lamar, PA (Summerfelt et al., in press). Drawing courtesy

of Oak Point Associates, Biddeford, ME.

S.T. Summerfelt / Aquacultural Engineering 28 (2003) 21�/36 27



tank. The ventilated cascade column (Fig. 4) is used to strip the remaining ozone

residual while reducing excessive levels of dissolved oxygen before the water flow is

supplied to the fish culture tanks.

2.4. Ozone toxicity

Although ozone has a rapid reaction rate and few harmful reaction products, it is
toxic to aquatic life at low levels (Wedemeyer et al., 1979; Langlais et al., 1991).

Ozone gas is also toxic to humans. Standards set by the federal Occupational Safety

and Health Administration only allows for a maximum single exposure level of 0.3

ppm for less than a 10 min duration and of 0.1 ppm on a time-weighted average for

an 8-h period (Occupational Health and Safety Administration, 1993). Therefore,

care must be used when transferring an ozone containing air or purified oxygen gas

mixture into water, when providing time for reaction of dissolved ozone with the

targeted constituents in the water, and when considering the removal or monitoring
of dissolved ozone before the water enters the culture tanks (Summerfelt and

Hochheimer, 1997).

2.4.1. Freshwater applications

The maximum safe level of chronic ozone exposure for salmonids is 0.002 mg/l

(Wedemeyer et al., 1979). A compilation of results from several studies indicates that

most fish exposed to ozone concentrations greater than 0.008�/0.06 mg/l will develop

severe gill damage that can result in serum osmolality imbalances and can kill fish
immediately or leave them more susceptible to microbial infections (Bullock et al.,

1997).

Only limited and expensive technology exists to continuously monitor dissolved

ozone at concentrations low enough to be safe for fish. Oxidation�/reduction

potential probes have also been used, with varying degrees of success, as an indirect

means to monitor and control dissolved ozone levels (Bullock et al., 1997).

2.4.2. Seawater applications

Ozone reacts with bromide ions in brackish and seawater systems to form the

oxidants hypobromous acid (HOBr) and hypobromite ion (OBr�), which are

relatively stable and toxic to fish and shellfish (Crecelius, 1978; Huguenin and Colt,

1989; Blogoslawski and Perez, 1992; Keaffaber et al., 1992). Prolonged ozonation

can further oxidize hypobromite ion to bromate (BrO3
�), which is another persistent

and toxic compound. Unfortunately, the production conditions and toxicity towards

aquatic animals of these ozonation by-products are not well understood.

2.5. Ozone destruction

Supplying an adequate level of ozone residual at the end of the contact chamber to

ensure disinfection will also require that this same ozone be removed prior to the

water reaching the aquatic organisms. In many cases, residuals are eliminated by

water retention within tanks immediately after ozonation (Fig. 4) or by applying
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small doses of a reducing agent, e.g., 1 mg/l of sodium thiosulphate (Hemdal, 1992).

Dissolved ozone can also be stripped into air when passed through a forced-

ventilation packed aeration column (Fig. 4) (Cryer, 1992; Summerfelt et al., in press).

However, air stripping will also remove dissolved oxygen concentrations that are in

excess of saturation, which may or may not be desirable. Dissolved ozone can also be

destroyed by passing the water through a biofilter or bed of activated carbon,

reaction with low levels of hydrogen peroxide, or contact with high intensity UV

light (catalyzing the conversion of O3 to O2). Achieving ozone destruction with UV

electromagnetic radiation depends on the wavelength of the UV light source and the

quantity of energy transmitted (Rodriguez and Gagnon, 1991; Hunter et al., 1998).

Ozone residuals are destroyed at UV light wavelengths ranging from 250 to 260 nm.

Ironically, UV wavelengths of 185 nm can be used to generate ozone.

2.6. Ozone applications in recirculating aquaculture systems

Ozone is often used to improve water quality within intensive recirculating systems

that are designed to maintain high quality water (Summerfelt et al., 2001), especially

within recently constructed salmonid production systems. Ozone is most often

applied to recirculating systems at doses that promote water quality improvement

(Colberg and Lingg, 1978; Otte and Rosenthal, 1979; Rosenthal and Otte, 1980;

Williams et al., 1982; Paller and Lewis, 1988; Rosenthal and Black, 1993; Brazil,

1996; Bullock et al., 1997; Summerfelt and Hochheimer, 1997; Summerfelt et al.,

1997; Krumins et al., 2001a,b). This author has reached the following conclusions

after considering the above listed research on ozonation within recirculating systems:

. Ozone is thought to impart water quality improvements by oxidizing larger and

relatively complex organic molecules and thereby creating smaller and more

biodegradable molecules.

. Ozone will break apart refractory organic molecules, which can reduce the color

of water.
. Ozone will oxidize nitrite to nitrate.

. Ozonation may enhance fine solids removal by changing particle size (i.e.,

microflocculating fine particulate matter) and surface properties, which can make

particles easier to settle, filter, or float (Reckhow et al., 1993). However, these

effects are still not clearly defined.

In addition, ozonation of recirculating systems can reduce fish disease simply by

improving water quality, which reduces or eliminates environmental sources of stress

(Brazil, 1996; Bullock et al., 1997). These studies, as well as experience with ozone

application at numerous commercial recirculating systems, indicates that both water

quality and fish health can be improved by adding approximately 13�/24 g ozone for

every 1.0 kg of feed fed to a recirculating system (Brazil, 1996; Bullock et al., 1997).
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2.6.1. More discussion on the use of ozone to oxidize nitrite

The fact that ozone decreases nitrite levels in a recirculating system is a substantial

benefit on those occasions when bacterial conversion of nitrite to nitrate in the

biofilter is lost. However, because ozone reduces the nitrite concentration going to

the biofilter, it also reduces the quantity of bacteria converting nitrite to nitrate and

thus reduces the total acclimated nitrite removal capacity of the biofilter. Nitrite

concentrations can rapidly accumulate within fully recirculating systems when ozone
addition is interrupted, because ozone can be responsible for removing a fairly large

fraction of the total nitrite produced.

In addition, ozone has been occasionally applied to recirculating systems as an

afterthought in order to overcome design or operational errors. For example, ozone

has been added when biofilters used in recirculating aquaculture systems were found

to be incapable of converting all of the nitrite produced into nitrate. These biofilter

problems may be due to insufficient surface area (or volume) for completing the two-

step nitrification process or may be due to an insufficient supply of dissolved oxygen.
Insufficient dissolved oxygen is sometimes caused by poor solids removal that

increases heterotrophic respiration within the biofilter. Ozone is then added to these

systems as an afterthought to prevent nitrite from accumulating to unsafe levels.

However, adding ozone as a fix is not the ideal solution. Ideally, the biofilter will be

designed and operated with sufficient surface area and dissolved oxygen to complete

the nitrification process, especially when it must treat higher organic and ammonia

loading rates. Improved solids control before and within the biofilter will often

improve biofilter nitrification and reduce the ozone requirement in many applica-
tions.

3. UV irradiation

UV irradiation can be used to destroy ozone residuals (catalyzing the conversion

of O3 to O2) and to denature the DNA of microorganisms, causing the

microorganisms to die or lose their function. Achieving ozone destruction and

microorganism inactivation with UV irradiation depends on the wavelength of the
UV light source and the quantity of energy transmitted (Rodriguez and Gagnon,

1991; Hunter et al., 1998). Ozone residuals are destroyed at UV light wavelengths

ranging from 250 to 260 nm, while microorganism inactivation can be achieved at

UV wavelengths ranging from 100 to 400 nm, although a wavelength of 254 nm is

most effective. Low pressure UV bulb systems are almost an industry standard and

supply monochromatic irradiation specific to the 254 nm wavelength (Fig. 5).

Medium pressure bulb systems are also available, but not as commonly used, to

supply a broader UV spectrum (Fig. 6). To achieve a given UV dose, medium
pressure UV systems generally require far fewer bulbs (5�/20% of the bulbs) but

possibly 2�/3 times more power than traditional low pressure and low intensity bulb

systems. A low pressure but high intensity bulb system has recently been introduced

to supply efficient mono-chromatic irradiation that requires only 1/3rd to 1/6th of

the bulb required by traditional low pressure and low intensity bulb systems.
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UV light intensity is described in terms of mW/cm2 and UV dose in terms of

mW s/cm2. According to White (1992), contact times of 10�/30 s are typical of many

commercial UV units.

UV doses of 60�/75 mW s/cm2 have been reported to completely destroy ozone

residuals as high as 0.5 mg/l (Hunter et al., 1998). UV doses required to inactivate

Fig. 5. Nearly monochromatic irradiation specific to the 254 nm wavelength can be supplied by low

pressure UV bulb systems (Courtesy of Trojan Technologies, London, Ont., Canada).

Fig. 6. Medium pressure bulb systems supply a broader UV spectrum (Courtesy of Trojan Technologies,

London, Ont., Canada).
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microorganisms can vary tremendously, from only 2 mW s/cm2 to more than 230

mW s/cm2 (at 254 nm), depending upon the target organism and the required kill

rate (Wedemeyer, 1996). Research summarized by Wedemeyer (1996) and Liltved

(2001) indicates that many fish pathogens are inactivated by UV doses of 30 mW s/

cm2, excepting of Saprolegnia, white spot syndrome baculovirus, and IPN virus

(which require extremely high UV to inactivate).

However, before the UV dose can even reach the target organism, it must be able
to transmit through the water. Therefore, the lowest expected UV transmittance of

the process water should be established and used to predict how much UV intensity

must be generated to transmit the desired UV dose through the water between the

target organism and the light source. The UV filter unit should also be sized to

account for the 40% decline in bulb intensity that occurs over the typical 12 month

expected lamp life.

Achieving UV disinfection requires maintaining a minimum UV dose that is the

product of the UV light intensity, the exposure time to this constant intensity, and a
transmittance factor (see equation below). Therefore, the actual UV dose applied

depends on the water flowrate (Q ), the operating volume within the UV vessel

(Vvessel), the lamp intensity (including losses through the quartz sleeve), and the UV

transmittance of water (% Transm). An approximate relationship follows:

UV dose� (UV intensity)(exposur time)(transmittance factor)

$(UV intensity)

�
Vvessel

Q

�
aexp(b%Transm)

�#mW s=cm2

where a and b are coefficients that are specific to a given UV irradiation unit. The
transmittance factor includes a correction for bulb spacing (as well as a correction

for other factors), which is of note because UV intensity drops off as a square of the

distance between the target organism and the light source (White, 1992).

The UV transmittance of spring water, partial-reuse system water, fully

recirculating system water and of the facility’s discharge water after microscreen

filtration have been monitored at the Freshwater Institute (Table 1). The UV

transmittance through the various water sources were found to be greatest in the

water taken directly from the spring and degrades with intensity of use and especially
with cleaning events (Table 1).

UV filters can be built as non-pressurized open channel units (Fig. 7) or as

pressurized tube-and-shell units. The UV bulbs are usually contained within quartz

sleeves to allow submergence in the process flow. The quartz sleeves must be kept

clean to maintain transmittance (Fig. 7). Using UV light does not produce toxic

residuals or form byproducts that pose a risk to aquatic organisms.
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4. Concluding remarks

Care must be used when determining the effective ozone or UV dose that must be

supplied to achieve disinfection. Certain pathogens may require much higher UV

irradiation doses or higher ozone c �/t values in order to achieve inactivation.

Table 1

Average UV transmittance data (across a 1-cm path length) measured on the Freshwater Institute’s spring

water, partial-reuse system water, fully recirculating system water and of the facility’s discharge water after

microscreen filtration

Water Source UV Transmittance

Mean (%) Range (%)

Spring water 97 95�/98

Partial-reuse system water 96 88�/98

Fully-recirculating system water 93 88�/98

Facility discharge

During normal operation 90 70�/95

During cleaning period 40 30�/50

Steven Summerfelt, unpublished data.

Fig. 7. Quartz sleeves are cleaned on an open channel UV system (with low pressure/low intensity bulbs)

at the Freshwater Institute.
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Applying UV irradiation for disinfection can be both less costly and less complex

than using ozone. In addition, UV irradiation does not generate toxic residuals (as

does ozone). However, UV irradiation may not work in situations where turbid

water (and associated poor UV transmittance) may be encountered.

Applying ozone to disinfect aquaculture system influents or effluents can be quite

complex and costly, yet disinfection is still necessary in many situations to control

pathogen introduction. The process becomes even more complex if oxygen is
produced on-site. However, there are several reasons why adding ozone within

recirculating systems may not be as expensive (for a given flow treated) as adding

ozone to disinfect aquaculture system influent and effluent flows. For one reason,

ozone is not typically added to disinfect water flowing through a recirculating

system, therefore, ozone doses added to recirculating flows are typically lower than

ozone doses added to disinfect influent and effluent flows. Also, all ozone

applications require ozone generation, ozone transfer into solution, contact time

for ozone to react, and possibly ozone destruction to ensure that no ozone residual
makes it into the culture tanks (as previously mentioned). However, adding ozone to

a recirculating system can be less complicated than ozonating a water supply or

hatchery effluent, because in recirculating aquaculture systems ozone transfer is

sometimes accomplished using the same gas transfer unit that is used for oxygen

supplementation*/assuming that the transfer unit is fabricated from ozone resistant

material (Bullock et al., 1997). In these situations, adding ozone to a recirculating

system that is already using purified oxygen only requires installation of an ozone

generator and the accompanying ozone distribution, monitoring, and control
mechanisms (Summerfelt and Hochheimer, 1997). Most of the other necessary

equipment (oxygen supply and distribution system, gas transfer units, and control

mechanisms) are already in place. Also, the large ozone demand of the water

typically found within a recirculating system causes the ozone dose to react and

dissipate rapidly, which minimizes the requirement for a large ozone contactor and a

dissolved ozone destruct unit (rapid ozone reaction is also a primary reason why

ozone disinfection within recirculating systems is so difficult to achieve). Disinfecting

system influent and effluent flows will require large ozone contactors and may also
require dissolved ozone destruct units.
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